前面我们学习了numpy,现在我们来学习一下pandas。

Python Data Analysis Library 或 pandas 主要用于处理类似excel一样的数据格式,其中有表头、数据序列号以及实际的数据,而numpy就仅仅包含了实际的数据。

安装

直接输入:

pip3 install pandas

最基本用法

import pandas as pd
s = pd.Series([1, 2, 5, 6])
print(s)

输出:

0    1
1 2
2 5
3 6
dtype: int64

我们可以看到pandas自动添加了数据的序列号。

自定义索引项和列名

import pandas as pd
import numpy as np
# 创建一个日期索引项
dates = pd.date_range("2017-01-04", periods=6)
print("dates=", dates) # 创建一个类似excel表格一样的数据表,其中索引项为日期索引,列名为:a,b,c,d
data = pd.DataFrame(np.random.rand(6, 4), index=dates, columns=["a", "b", "c", "d"])
print("data=")
print(data)

输出:

dates= DatetimeIndex(['2017-01-04', '2017-01-05', '2017-01-06', '2017-01-07',
'2017-01-08', '2017-01-09'],
dtype='datetime64[ns]', freq='D')
data=
a b c d
2017-01-04 0.637641 0.756613 0.297506 0.692492
2017-01-05 0.319457 0.401690 0.550955 0.862642
2017-01-06 0.685646 0.007546 0.376774 0.735220
2017-01-07 0.767868 0.000718 0.799336 0.428242
2017-01-08 0.004777 0.292726 0.227704 0.117925
2017-01-09 0.946817 0.153245 0.154102 0.165621

看,输出了一个比较规整的电子表格。

上面这些命令包括需要哪些参数不需要特别记忆,如果你用idea的话会自动给你提示的。

默认索引号和列名

如果我们没有指定索引号和列名,pandas会自动以0,1,2这样的自然数来定义我们的索引号和列名,例如:

import pandas as pd
import numpy as np
data = pd.DataFrame(np.random.rand(6, 4))
print("data=")
print(data)

输出:

data=
0 1 2 3
0 0.515289 0.900554 0.490999 0.941186
1 0.706116 0.267078 0.870968 0.904068
2 0.002414 0.648418 0.579449 0.827671
3 0.473538 0.640514 0.564209 0.040902
4 0.052849 0.372015 0.613814 0.516763
5 0.484220 0.479558 0.007722 0.216598

map方式创建DataFrame

可以用一个map方式来创建DataFrame,这样相当于map中的key为列名,value为此列的数据列表:

import pandas as pd
import numpy as np
data = pd.DataFrame({
"A": np.array([1, 2, 3, 5]),
"B": ["test", "train", "go", "java"],
"C": "dog",
"D": 12
})
print("data=")
print(data)

输出为:

data=
A B C D
0 1 test dog 12
1 2 train dog 12
2 3 go dog 12
3 5 java dog 12

查看每列的数据类型

我想知道pandas中每列的数据类型,有点像了解数据库中表的字段类型,这可以通过dtypes属性获得:

import pandas as pd
import numpy as np
data = pd.DataFrame({
"A": np.array([1, 2, 3, 5]),
"B": ["test", "train", "go", "java"],
"C": "dog",
"D": 12
})
print(data.dtypes)

输出:

A     int32
B object
C object
D int64
dtype: object

获得列名和索引

想要获得pandas中的列名和索引,只要使用columns和index属性就可以:

import pandas as pd
import numpy as np
data = pd.DataFrame({
"A": np.array([1, 2, 3, 5]),
"B": ["test", "train", "go", "java"],
"C": "dog",
"D": 12
}) print("列名:", data.columns)
print("索引:", data.index)

输出:

列名: Index(['A', 'B', 'C', 'D'], dtype='object')
索引: RangeIndex(start=0, stop=4, step=1)

使用describe()函数对数据快速统计汇总

import pandas as pd
import numpy as np
data = pd.DataFrame({
"A": np.array([1, 2, 3, 5]),
"B": ["test", "train", "go", "java"],
"C": "dog",
"D": 12
}) print(data.describe())

输出:

              A     D
count 4.000000 4.0
mean 2.750000 12.0
std 1.707825 0.0
min 1.000000 12.0
25% 1.750000 12.0
50% 2.500000 12.0
75% 3.500000 12.0
max 5.000000 12.0

其中就对可计算的列进行计数、求平均值、方差、最小值、最大值等。

pandas转置

相当于把电子表格中的行和列翻转一下。

import pandas as pd
import numpy as np
data = pd.DataFrame({
"A": np.array([1, 2, 3, 5]),
"B": ["test", "train", "go", "java"],
"C": "dog",
"D": 12
}) print(data.T)

输出:

      0      1    2     3
A 1 2 3 5
B test train go java
C dog dog dog dog
D 12 12 12 12

这样索引项就变成了原先数据集中的列名。

排序

sort_index()可以按照索引项进行排序。

import pandas as pd
import numpy as np
data = pd.DataFrame({
"A": np.array([1, 2, 3, 5]),
"B": ["test", "train", "go", "java"],
"C": "dog",
"D": 12
})
# 按照索引项进行倒排
print("按照索引项进行倒排:")
print(data.sort_index(ascending=False)) # 对列名进行倒排
print("对列名进行倒排:")
print(data.sort_index(axis=1, ascending=False))

输出:

按照索引项进行倒排:
A B C D
3 5 java dog 12
2 3 go dog 12
1 2 train dog 12
0 1 test dog 12
对列名进行倒排:
D C B A
0 12 dog test 1
1 12 dog train 2
2 12 dog go 3
3 12 dog java 5

排序中的数据会跟着列或索引项进行调换顺序,因此数据不会错乱。

按照值排序

使用sort_values()函数对值进行排序,其中可以指定按照哪一列的数据进行排序的:

import pandas as pd
import numpy as np
data = pd.DataFrame({
"A": np.array([1, 2, 3, 5]),
"B": ["test", "train", "go", "java"],
"C": "dog",
"D": 12
}) print(data.sort_values(by='B'))

输出:

   A      B    C   D
2 3 go dog 12
3 5 java dog 12
0 1 test dog 12
1 2 train dog 12

pandas基本介绍-【老鱼学pandas】的更多相关文章

  1. pandas合并merge-【老鱼学pandas】

    本节讲述对于两个数据集按照相同列的值进行合并. 首先定义原始数据: import pandas as pd import numpy as np data0 = pd.DataFrame({'key' ...

  2. pandas画图-【老鱼学pandas】

    本节主要讲述如何把pandas中的数据用图表的方式显示在屏幕上,有点类似在excel中显示图表. 安装matplotlib 为了能够显示图表,首先需要安装matplotlib库,安装方法如下: pip ...

  3. pandas选择数据-【老鱼学pandas】

    选择列 根据列名来选择某列的数据 import pandas as pd import numpy as np dates = pd.date_range("2017-01-08" ...

  4. pandas设置值-【老鱼学pandas】

    本节主要讲述如何根据上篇博客中选择出相应的数据之后,对其中的数据进行修改. 对某个值进行修改 例如,我们想对数据集中第2行第2列的数据进行修改: import pandas as pd import ...

  5. pandas处理丢失数据-【老鱼学pandas】

    假设我们的数据集中有缺失值,该如何进行处理呢? 丢弃缺失值的行或列 首先我们定义了数据集的缺失值: import pandas as pd import numpy as np dates = pd. ...

  6. pandas导入导出数据-【老鱼学pandas】

    pandas可以读写如下格式的数据类型: 具体详见:http://pandas.pydata.org/pandas-docs/version/0.20/io.html 读取csv文件 我们准备了一个c ...

  7. pandas合并数据集-【老鱼学pandas】

    有两个数据集,我们想把他们的结果根据相同的列名或索引号之类的进行合并,有点类似SQL中的从两个表中选择出不同的记录并进行合并返回. 合并 首先准备数据: import pandas as pd imp ...

  8. 二分类问题续 - 【老鱼学tensorflow2】

    前面我们针对电影评论编写了二分类问题的解决方案. 这里对前面的这个方案进行一些改进. 分批训练 model.fit(x_train, y_train, epochs=20, batch_size=51 ...

  9. tensorflow卷积神经网络-【老鱼学tensorflow】

    前面我们曾有篇文章中提到过关于用tensorflow训练手写2828像素点的数字的识别,在那篇文章中我们把手写数字图像直接碾压成了一个784列的数据进行识别,但实际上,这个图像是2828长宽结构的,我 ...

随机推荐

  1. 自动化selenium开发

    一.开发环境搭建 1.Firefox浏览器 1.1 下载firefix并安装. 1.2 Firefox中打开"开始菜单“ -> ”开发者“ -> ”获取更多工具“ -> 搜 ...

  2. webpack 的使用2

    实际项目中的配置 要加__dirname 不然会报错 注意path  /dist 前不要加点 结果 将两个文件打包在一起 结果 传入对象 并且单独打包 name为key 加上本次打包的hash has ...

  3. jquery控制div随滚动条滚动效果

    <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>jquery div随滚动条 ...

  4. 一个demo学会js

    全栈工程师开发手册 (作者:栾鹏) 快捷链接: js系列教程1-数组操作全解 js系列教程2-对象和属性全解 js系列教程3-字符串和正则全解 js系列教程4-函数与参数全解 js系列教程5-容器和算 ...

  5. 【学习】js学习笔记:数组(一)

    1.创建数组并赋值 //对象方式 var arr=new Array(1,2,3,4); //隐形声明方式 var arr2=[5,6,7,8]; 2.数组可以存储任何类型的数据 3.访问数组,是用下 ...

  6. JavaScript中的面向对象程序设计

    本文内容目录顺序: 1.Object概念讲述: 2.面向对象程序设计特点: 3.JavaScript中类和实例对象的创建: 4.原型概念: 5.原型API: 6.原型对象的具体使用:7.深入理解使用原 ...

  7. VCI_CAN二次开发摘机

    1. 关于CAN滤波的设置的几个参数 PVCI_INIT_CONFIG结构,VCI_InitCAN函数调用时使用 AccCode: 验收码(左对齐) 帧过滤验收码.对经过屏蔽码过滤为"有关位 ...

  8. 解决Ubuntu中phpmyadmin对数据上传上限2M

    本文部分参考自:http://www.myhack58.com/Article/sort099/sort0102/2011/29396.htm 原文有少量错误或者过时的(相对于ubuntu15来说)内 ...

  9. (转)[疯狂Java]NIO:Channel的map映射

    原文出自:http://blog.csdn.net/lirx_tech/article/details/51396268 1. 通道映射技术: 1) 其实就是一种快速读写技术,它将通道所连接的数据节点 ...

  10. PHP入门,clone和__clone

      前 言 这篇文章主要介绍了PHP编程中的__clone()方法使用详解,__clone()方法相当于一个浅拷贝,是PHP入门学习中的基础知识,需要的朋友可以参考下. 1对象是引用数据类型,当使用= ...