[51NOD1126]求递推序列的第n项(矩阵快速幂)
题目链接:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1126
存在参数a,b为负数的情况。这时候要这么处理:
根据mod值(7)加至刚好大于0。
否则有些样例是过不去的。
#include <algorithm>
#include <iostream>
#include <iomanip>
#include <cstring>
#include <climits>
#include <complex>
#include <fstream>
#include <cassert>
#include <cstdio>
#include <bitset>
#include <vector>
#include <deque>
#include <queue>
#include <stack>
#include <ctime>
#include <set>
#include <map>
#include <cmath> using namespace std; const int maxn = ;
typedef struct Matrix {
int m[maxn][maxn];
int r;
int c;
Matrix(){
r = c = ;
memset(m, , sizeof(m));
}
} Matrix; Matrix mul(Matrix m1, Matrix m2, int mod) {
Matrix ans = Matrix();
ans.r = m1.r;
ans.c = m2.c;
for(int i = ; i <= m1.r; i++) {
for(int j = ; j <= m2.r; j++) {
for(int k = ; k <= m2.c; k++) {
if(m2.m[j][k] == ) continue;
ans.m[i][k] = ((ans.m[i][k] + m1.m[i][j] * m2.m[j][k] % mod) % mod) % mod;
}
}
}
return ans;
} Matrix quickmul(Matrix m, int n, int mod) {
Matrix ans = Matrix();
for(int i = ; i <= m.r; i++) {
ans.m[i][i] = ;
}
ans.r = m.r;
ans.c = m.c;
while(n) {
if(n & ) {
ans = mul(m, ans, mod);
}
m = mul(m, m, mod);
n >>= ;
}
return ans;
} int a, b, n, m; int main() {
// freopen("in", "r", stdin);
m = ;
while(~scanf("%d %d %d", &a, &b, &n)) {
Matrix p;
while(a < ) a += m;
while(b < ) b += m;
p.r = , p.c = ;
p.m[][] = ;
p.m[][] = ;
if(n <= ) {
printf("%d\n", p.m[-n+][] % m);
continue;
}
Matrix s;
s.r = s.c = ;
s.m[][] = a, s.m[][] = b;
s.m[][] = , s.m[][] = ;
s = quickmul(s, n-, m);
int ans = ;
for(int i = ; i <= p.r; i++) {
ans = (ans + (p.m[i][] * s.m[][i]) % m) % m;
}
printf("%d\n", ans % m);
}
return ;
}
[51NOD1126]求递推序列的第n项(矩阵快速幂)的更多相关文章
- 51nod1126 求递推序列的第N项
求递推序列的第N项 有一个序列是这样定义的:f(1) = 1, f(2) = 1, f(n) = (A * f(n - 1) + B * f(n - 2)) mod 7. 给出A,B和N,求f(n)的 ...
- 51nod1126 求递推序列的第N项【递推】
有一个序列是这样定义的:f(1) = 1, f(2) = 1, f(n) = (A * f(n - 1) + B * f(n - 2)) mod 7. 给出A,B和N,求f(n)的值. Input 输 ...
- [51nod 1126] 求递推序列的第N项 - 矩阵乘法
#include <bits/stdc++.h> using namespace std; #define int long long const int mod = 7; struct ...
- 51nod 1126 求递推序列的第N项
1126 求递推序列的第N项 基准时间限制:1 秒 空间限制:131072 KB 分值: 10 难度:2级算法题 收藏 关注 有一个序列是这样定义的:f(1) = 1, f(2) = 1, f( ...
- 51nod 1126 求递推序列的第N项 思路:递推模拟,求循环节。详细注释
题目: 看起来比较难,范围10^9 O(n)都过不了,但是仅仅是看起来.(虽然我WA了7次 TLE了3次,被自己蠢哭) 我们观察到 0 <= f[i] <= 6 就简单了,就像小学初中学的 ...
- 51nod 1126 - 求递推序列的第N项 - [找规律]
题目链接:https://cn.vjudge.net/problem/51Nod-1126 有一个序列是这样定义的:f(1) = 1, f(2) = 1, f(n) = (A * f(n - 1) + ...
- 515Nod 1126 求递推序列的第n项【矩阵快速幂】
有一个序列是这样定义的:f(1) = 1, f(2) = 1, f(n) = (A * f(n - 1) + B * f(n - 2)) mod 7. 给出A,B和N,求f(n)的值. Input 输 ...
- 51Nod 1126 求递推序列的第N项(矩阵快速幂)
#include <iostream> #include <algorithm> #include <cmath> #define MOD 7 #define N ...
- 51nod 1126 求递推序列的第N项 && hdu - 1005 Number Sequence (求周期)
http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1126 http://acm.hdu.edu.cn/showproblem ...
随机推荐
- SOLVED: GATT callback fails to register
I finally figured this problem out. The device I am using is a Samsung Galaxy S4 and the actual prob ...
- 20145120 《Java程序设计》实验一实验报告
20145120 <Java程序设计>实验一实验报告 实验名称:Java开发环境的熟悉 实验目的与要求: 1.使用JDK编译.运行简单的Java程序:(第1周学习总结) 2.编辑.编译.运 ...
- 图片轮播插件-carouFredSel
carouFredSel图片轮播插件基于Jquery,比较常规的轮播插件,支持滚轮及键盘左右按键,加入其它插件可实现更加复杂的特效. 主页地址:http://caroufredsel.dev7stud ...
- C# 数据结构--排序[上]
概述 看了几天的排序内容,现在和大家分享一些常见的排序方法. 啥是排序? 个人理解的排序:通过对数组中的值进行对比,交换位置最终得到一个有序的数组.排序分为内存排序和外部排序.本次分享排序方法都为内存 ...
- PE文件结构详解(六)重定位
前面两篇 PE文件结构详解(四)PE导入表 和 PE文件结构详解(五)延迟导入表 介绍了PE文件中比较常用的两种导入方式,不知道大家有没有注意到,在调用导入函数时系统生成的代码是像下面这样的: 在这里 ...
- Python 资源
转:http://www.360doc.com/content/16/0308/14/31385575_540482688.shtml 本页面是俺收集的各种 Python 资源,不定期更新. 下面列出 ...
- What is XMLHTTP? How to use security zones in Internet Explorer
Types of Security Zones Internet Zone This zone contains Web sites that are not on your computer or ...
- [转载]Spring Autowire自动装配介绍
转自: http://www.cnblogs.com/zhishan/p/3190757.html 在应用中,我们常常使用<ref>标签为JavaBean注入它依赖的对象.但是对于一个大型 ...
- MVC中SelectList和@Html.DropDownList("MainDuty_UserId","请选择")的运用
Models.Project model = projectdb.dbSet.SingleOrDefault(e => e.Project_ID == id); ViewB ...
- **使用 Git Hook 实现网站的自动部署
http://www.tuicool.com/articles/3QRB7jU 自动化能解放人类的双手,而且更重要的是,因为按照规定的流程来走,也减少了很多误操作的产生.不知道大家平时都是怎么样更新自 ...