Description

Input

Output

对于每组数据,若最小的不协调度不超过1018,则第一行一个数表示不协调度若最小的不协调度超过1018,则输出"Too hard to arrange"(不包含引号)。每个输出后面加"--------------------"

Sample Input

4
4 9 3
brysj,
hhrhl.
yqqlm,
gsycl.
4 9 2
brysj,
hhrhl.
yqqlm,
gsycl.
1 1005 6
poet
1 1004 6
poet

Sample Output

108
--------------------
32
--------------------
Too hard to arrange
--------------------
1000000000000000000
--------------------

【样例说明】
前两组输入数据中每行的实际长度均为6,后两组输入数据每行的实际长度均为4。一个排版方案中每行相邻两个句子之间的空格也算在这行的长度中(可参见样例中第二组数据)。每行末尾没有空格。

HINT

总共10个测试点,数据范围满足:

测试点 T N L P
1 ≤10 ≤18 ≤100 ≤5
2 ≤10 ≤2000 ≤60000 ≤10
3 ≤10 ≤2000 ≤60000 ≤10
4 ≤5 ≤100000 ≤200 ≤10
5 ≤5 ≤100000 ≤200 ≤10
6 ≤5 ≤100000 ≤3000000 2
7 ≤5 ≤100000 ≤3000000 2
8 ≤5 ≤100000 ≤3000000 ≤10
9 ≤5 ≤100000 ≤3000000 ≤10
10 ≤5 ≤100000 ≤3000000 ≤10
所有测试点中均满足句子长度不超过30。

 
题解如下
https://www.byvoid.com/blog/noi-2009-poet
我只放AC代码
 #include<cstdio>
#include<cstring>
#define ll long double
struct node{int l,r,p;}q[];
#define MAX 1000000000000000000LL
#define N 100100
ll sum[N],f[N];
int n,l,p,T;
char ch[];
ll pow(ll y){
if(y<)y=-y;
ll ans=;
for (int i=;i<=p;i++) ans*=y;
return ans;
} ll calc(int x,int y){
return f[x]+pow(sum[y]-sum[x]+(y-x-)-l);
} int find(node t,int x){
int l=t.l,r=t.r;
while(l<=r){
int mid=(l+r)>>;
if (calc(x,mid)<=calc(t.p,mid)) r=mid-;
else l=mid+;
}
return l;
} void dp(){
int head=,tail=;
q[++tail]=(node){,n,};
for (int i=;i<=n;i++){
if(q[head].r<i&&head<=tail) head++;
f[i]=calc(q[head].p,i);
if (head>tail||calc(i,n)<=calc(q[tail].p,n)){
while(head<=tail&&calc(q[tail].p,q[tail].l)>=calc(i,q[tail].l)) tail--;
if(head>tail)q[++tail]=(node){i,n,i};
else{
int x=find(q[tail],i);
q[tail].r=x-;
q[++tail]=(node){x,n,i};
}
}
}
} int main(){
scanf("%d",&T);
while(T--){
scanf("%d%d%d",&n,&l,&p);
for (int i=;i<=n;i++) scanf("%s",ch),sum[i]=sum[i-]+strlen(ch);
dp();
if(f[n]>MAX)
puts("Too hard to arrange");
else
printf("%lld\n",(long long)f[n]);
puts("--------------------");
}
}

【BZOJ 1563】 [NOI2009]诗人小G的更多相关文章

  1. [BZOJ] 1563: [NOI2009]诗人小G

    1D/1D的方程,代价函数是一个p次函数,典型的决策单调性 用单调队列(其实算单调栈)维护决策点,优化转移 复杂度\(O(nlogn)\) #include<iostream> #incl ...

  2. 1563: [NOI2009]诗人小G

    1563: [NOI2009]诗人小G https://lydsy.com/JudgeOnline/problem.php?id=1563 分析: 直接转移f[i]=f[j]+cost(i,j),co ...

  3. bzoj1563: [NOI2009]诗人小G 决策单调性(1D1D)

    目录 题目链接 题解 代码 题目链接 bzoj1563: [NOI2009]诗人小G 题解 \(n^2\) 的dp长这样 \(f_i = min(f_j + (sum_i - sum_j - 1 - ...

  4. [NOI2009]诗人小G --- DP + 决策单调性

    [NOI2009]诗人小G 题目描述: 小G是一个出色的诗人,经常作诗自娱自乐. 但是,他一直被一件事情所困扰,那就是诗的排版问题. 一首诗包含了若干个句子,对于一些连续的短句,可以将它们用空格隔开并 ...

  5. P1912 [NOI2009]诗人小G

    P1912 [NOI2009]诗人小G 思路: 平行四边形不等式优化dp 因为f(j, i) = abs(sum[i]-sum[j]+i-j-1-l)^p 满足平行四边形不等式 j < i f( ...

  6. LG1912 [NOI2009]诗人小G

    题意 题目描述 小G是一个出色的诗人,经常作诗自娱自乐.但是,他一直被一件事情所困扰,那就是诗的排版问题. 一首诗包含了若干个句子,对于一些连续的短句,可以将它们用空格隔开并放在一行中,注意一行中可以 ...

  7. [NOI2009] 诗人小G [题解]

    诗人小G 题目大意 给出 \(n\) 个长度不超过 \(30\) 的句子,要求你对其进行排版. 对于每一行,有一个规定的行标准长度 \(L\) ,每一行的不协调度等于该行的实际长度与行标准长度差的绝对 ...

  8. NOI2009 诗人小G

    Sol 决策单调性+二分 传说中的四边形不等式...其实做了这道题还是不会... 证明简直吃屎//// 贴个传送门这里有部分分做法还有决策单调性的证明 byvoid ISA tell me that ...

  9. 不失一般性和快捷性地判定决策单调(洛谷P1912 [NOI2009]诗人小G)(动态规划,决策单调性,单调队列)

    洛谷题目传送门 闲话 看完洛谷larryzhong巨佬的题解,蒟蒻一脸懵逼 如果哪年NOI(放心我这样的蒟蒻是去不了的)又来个决策单调性优化DP,那蒟蒻是不是会看都看不出来直接爆\(0\)?! 还是要 ...

随机推荐

  1. poj 1848 树形dp

    思路:表示我很弱,这个想不出dp方程,参考网上代码 #include<iostream> #include<algorithm> #include<cstring> ...

  2. 使用AccessibilityService模拟点击事件失败的分析

    使用AccessibilityService模拟点击事件的方法: AccessibilityNodeInfo.performAction(AccessibilityNodeInfo.ACTION_CL ...

  3. IIS 发布网站到外网

    前段时间做了一个项目在局域网中测试后要发布到外网上,一时间不知怎么搞,以为直接在IIS中修改发布时的IP就可以了,但是不可行,经过摸索终于成功发布到外网,下面是具体步骤. 前期准备:公网IP,掩码,网 ...

  4. echars3.0 柱状图y轴字体斜放

    xAxis: [ { type: 'category', axisLabel: { interval: 0, rotate: 45,//倾斜角度设置,是什么时针未测 margin: 2 //距离上部的 ...

  5. AIDL进程间调用与Binder的简单介绍

    Binder是安卓中特有的一种进程间通信(IPC)方式,从Unix发展而来的手段,通信双方必须处理线程同步.内存管理等复杂问题,传统的Socket.匿名通道(Pipe).匿名管道(FIFO).信号量( ...

  6. Android实现双进程守护 (转)

    做过android开发的人应该都知道应用会在系统资源匮乏的情况下被系统杀死!当后台的应用被系统回收之后,如何重新恢复它呢?网上对此问题有很多的讨论.这里先总结一下网上流传的各种解决方案,看看这些办法是 ...

  7. 有关开机后win7任务管理器不断重启的问题,我的情况是sendrpt.exe导致的(转载,有补充)

    SendRpt.exe提示SendRpt:Error资源管理器未响应 打开电脑就发现资源管理器就未响应,还发现一个标题为Report sending utility的SendRpt.exe进程占用CP ...

  8. ADB 无法启动

    今天在做项目时候,突然无法启动,进入CMD命令启动adb 提示: adb server is out of date. killing... ADB server didn't ACK * faile ...

  9. Swift类型检查与转换

    继承会发生在子类和父类中,如图所示,是一系列类的继承关系类图,Person是类层次结构中的根类,Student是Person的直接子类,Worker是Person的直接子类.这个继承关系类图的具体实现 ...

  10. iOS 网络 -- cocoaPods 安装和使用教程

    Code4App 原创文章.转载请注明出处:http://code4app.com/article/cocoapods-install-usage CocoaPods 是什么? 当你开发iOS应用时, ...