引言

《分布式系统理论基础 - 一致性、2PC和3PC》一文介绍了一致性、达成一致性需要面临的各种问题以及2PC、3PC模型,Paxos协议在节点宕机恢复、消息无序或丢失、网络分化的场景下能保证决议的一致性,是被讨论最广泛的一致性协议。

Paxos协议同时又以其“艰深晦涩”著称,下面结合 Paxos Made SimpleThe Part-Time Parliament 两篇论文,尝试通过Paxos推演、学习和了解Paxos协议。

Basic Paxos

何为一致性问题?简单而言,一致性问题是在节点宕机、消息无序等场景可能出现的情况下,相互独立的节点之间如何达成决议的问题,作为解决一致性问题的协议,Paxos的核心是节点间如何确定并只确定一个值(value)。

也许你会疑惑只确定一个值能起什么作用,在Paxos协议里确定并只确定一个值是确定多值的基础,如何确定多值将在第二部分Multi Paxos中介绍,这部分我们聚焦在“Paxos如何确定并只确定一个值”这一问题上。

和2PC类似,Paxos先把节点分成两类,发起提议(proposal)的一方为proposer,参与决议的一方为acceptor。假如只有一个proposer发起提议,并且节点不宕机、消息不丢包,那么acceptor做到以下这点就可以确定一个值:

P1. 一个acceptor接受它收到的第一项提议

当然上面要求的前提条件有些严苛,节点不能宕机、消息不能丢包,还只能由一个proposer发起提议。我们尝试放宽条件,假设多个proposer可以同时发起提议,又怎样才能做到确定并只确定一个值呢?

首先proposer和acceptor需要满足以下两个条件:

1. proposer发起的每项提议分别用一个ID标识,提议的组成因此变为(ID, value)

2. acceptor可以接受(accept)不止一项提议,当多数(quorum) acceptor接受一项提议时该提议被确定(chosen)

(注: 注意以上“接受”和“确定”的区别)

我们约定后面发起的提议的ID比前面提议的ID大,并假设可以有多项提议被确定,为做到确定并只确定一个值acceptor要做到以下这点:

P2. 如果一项值为v的提议被确定,那么后续只确定值为v的提议

(注: 乍看这个条件不太好理解,谨记目标是“确定并只确定一个值”)

由于一项提议被确定(chosen)前必须先被多数派acceptor接受(accepted),为实现P2,实质上acceptor需要做到:

P2a. 如果一项值为v的提议被确定,那么acceptor后续只接受值为v的提议

满足P2a则P2成立 (P2a => P2)。

目前在多个proposer可以同时发起提议的情况下,满足P1、P2a即能做到确定并只确定一个值。如果再加上节点宕机恢复、消息丢包的考量呢?

假设acceptor c 宕机一段时间后恢复,c 宕机期间其他acceptor已经确定了一项值为v的决议但c 因为宕机并不知晓;c 恢复后如果有proposer马上发起一项值不是v的提议,由于条件P1,c 会接受该提议,这与P2a矛盾。为了避免这样的情况出现,进一步地我们对proposer作约束:

P2b. 如果一项值为v的提议被确定,那么proposer后续只发起值为v的提议

满足P2b则P2a成立 (P2b => P2a => P2)。

P2b约束的是提议被确定(chosen)后proposer的行为,我们更关心提议被确定前proposer应该怎么做:

P2c. 对于提议(n,v),acceptor的多数派S中,如果存在acceptor最近一次(即ID值最大)接受的提议的值为v',那么要求v = v';否则v可为任意值

满足P2c则P2b成立 (P2c => P2b => P2a => P2)。

条件P2c是Basic Paxos的核心,光看P2c的描述可能会觉得一头雾水,我们通过 The Part-Time Parliament 中的例子加深理解:

假设有A~E 5个acceptor,- 表示acceptor因宕机等原因缺席当次决议,x 表示acceptor不接受提议,o 表示接受提议;多数派acceptor接受提议后提议被确定,以上表格对应的决议过程如下:

  1. ID为2的提议最早提出,根据P2c其提议值可为任意值,这里假设为a
  2. acceptor A/B/C/E 在之前的决议中没有接受(accept)任何提议,因而ID为5的提议的值也可以为任意值,这里假设为b
  3. acceptor B/D/E,其中D曾接受ID为2的提议,根据P2c,该轮ID为14的提议的值必须与ID为2的提议的值相同,为a
  4. acceptor A/C/D,其中D曾接受ID为2的提议、C曾接受ID为5的提议,相比之下ID 5较ID 2大,根据P2c,该轮ID为27的提议的值必须与ID为5的提议的值相同,为b;该轮决议被多数派acceptor接受,因此该轮决议得以确定
  5. acceptor B/C/D,3个acceptor之前都接受过提议,相比之下C、D曾接受的ID 27的ID号最大,该轮ID为29的提议的值必须与ID为27的提议的值相同,为b

以上提到的各项约束条件可以归纳为3点,如果proposer/acceptor满足下面3点,那么在少数节点宕机、网络分化隔离的情况下,在“确定并只确定一个值”这件事情上可以保证一致性(consistency):

  • B1(ß): ß中每一轮决议都有唯一的ID标识
  • B2(ß): 如果决议B被acceptor多数派接受,则确定决议B
  • B3(ß): 对于ß中的任意提议B(n,v),acceptor的多数派中如果存在acceptor最近一次(即ID值最大)接受的提议的值为v',那么要求v = v';否则v可为任意值

(注: 希腊字母ß表示多轮决议的集合,字母B表示一轮决议)

另外为保证P2c,我们对acceptor作两个要求:

1. 记录曾接受的ID最大的提议,因proposer需要问询该信息以决定提议值

2. 在回应提议ID为n的proposer自己曾接受过ID最大的提议时,acceptor同时保证(promise)不再接受ID小于n的提议

至此,proposer/acceptor完成一轮决议可归纳为prepare和accept两个阶段。prepare阶段proposer发起提议问询提议值、acceptor回应问询并进行promise;accept阶段完成决议,图示如下:

还有一个问题需要考量,假如proposer A发起ID为n的提议,在提议未完成前proposer B又发起ID为n+1的提议,在n+1提议未完成前proposer C又发起ID为n+2的提议…… 如此acceptor不能完成决议、形成活锁(livelock),虽然这不影响一致性,但我们一般不想让这样的情况发生。解决的方法是从proposer中选出一个leader,提议统一由leader发起。

最后我们再引入一个新的角色:learner,learner依附于acceptor,用于习得已确定的决议。以上决议过程都只要求acceptor多数派参与,而我们希望尽量所有acceptor的状态一致。如果部分acceptor因宕机等原因未知晓已确定决议,宕机恢复后可经本机learner采用pull的方式从其他acceptor习得。

Multi Paxos

通过以上步骤分布式系统已经能确定一个值,“只确定一个值有什么用?这可解决不了我面临的问题。” 你心中可能有这样的疑问。

其实不断地进行“确定一个值”的过程、再为每个过程编上序号,就能得到具有全序关系(total order)的系列值,进而能应用在数据库副本存储等很多场景。我们把单次“确定一个值”的过程称为实例(instance),它由proposer/acceptor/learner组成,下图说明了A/B/C三机上的实例:

不同序号的实例之间互相不影响,A/B/C三机输入相同、过程实质等同于执行相同序列的状态机(state machine)指令 ,因而将得到一致的结果。

proposer leader在Multi Paxos中还有助于提升性能,常态下统一由leader发起提议,可节省prepare步骤(leader不用问询acceptor曾接受过的ID最大的提议、只有leader提议也不需要acceptor进行promise)直至发生leader宕机、重新选主。

小结

以上介绍了Paxos的推演过程、如何在Basic Paxos的基础上通过状态机构建Multi Paxos。Paxos协议比较“艰深晦涩”,但多读几遍论文一般能理解其内涵,更难的是如何将Paxos真正应用到工程实践。

微信后台开发同学实现并开源了一套基于Paxos协议的多机状态拷贝类库PhxPaxos,PhxPaxos用于将单机服务扩展到多机,其经过线上系统验证并在一致性保证、性能等方面作了很多考量。

--

本文提到的一些概念包括一致性(consistency)、一致性系统模型(system model)、多数派(quorum)、全序关系(total order)等,在以下文章中有介绍 :)

《分布式系统理论基础 - 一致性、2PC和3PC》

《分布式系统理论基础 - 选举、多数派和租约》

《分布式系统理论基础 - 时间、时钟和事件顺序》

《分布式系统理论基础 - CAP》

--

分布式系统理论进阶 - Paxos的更多相关文章

  1. 分布式系统理论进阶 - Paxos变种和优化

    引言 <分布式系统理论进阶 - Paxos>中我们了解了Basic Paxos.Multi Paxos的基本原理,但如果想把Paxos应用于工程实践,了解基本原理还不够. 有很多基于Pax ...

  2. 分布式系统理论进阶7:Paxos变种和优化

    本文转自:https://www.cnblogs.com/bangerlee/p/6189646.html 本系列文章将整理到我在GitHub上的<Java面试指南>仓库,更多精彩内容请到 ...

  3. 分布式系统理论进阶 - Raft、Zab

    引言 <分布式系统理论进阶 - Paxos>介绍了一致性协议Paxos,今天我们来学习另外两个常见的一致性协议——Raft和Zab.通过与Paxos对比,了解Raft和Zab的核心思想.加 ...

  4. 分布式系列文章——Paxos算法原理与推导

    Paxos算法在分布式领域具有非常重要的地位.但是Paxos算法有两个比较明显的缺点:1.难以理解 2.工程实现更难. 网上有很多讲解Paxos算法的文章,但是质量参差不齐.看了很多关于Paxos的资 ...

  5. 分布式一致性算法--Paxos

    Paxos算法是莱斯利·兰伯特(Leslie Lamport)1990年提出的一种基于消息传递的一致性算法.Paxos算法解决的问题是一个分布式系统如何就某个值(决议)达成一致.在工程实践意义上来说, ...

  6. 分布式一致性算法——paxos

    一.什么是paxos算法 Paxos 算法是分布式一致性算法用来解决一个分布式系统如何就某个值(决议)达成一致的问题. 人们在理解paxos算法是会遇到一些困境,那么接下来,我们带着以下几个问题来学习 ...

  7. 分布式系统理论--CAP理论、BASE理论

    问题的提出 在计算机科学领域,分布式一致性是一个相当重要且被广泛探索与论证问题,首先来看三种业务场景. 1.火车站售票 假如说我们的终端用户是一位经常坐火车的旅行家,通常他是去车站的售票处购买车票,然 ...

  8. [转]图解分布式一致性协议Paxos

    Paxos协议/算法是分布式系统中比较重要的协议,它有多重要呢? <分布式系统的事务处理>: Google Chubby的作者MikeBurrows说过这个世界上只有一种一致性算法,那就是 ...

  9. 【转载】分布式系列文章——Paxos算法原理与推导

    转载:http://linbingdong.com/2017/04/17/%E5%88%86%E5%B8%83%E5%BC%8F%E7%B3%BB%E5%88%97%E6%96%87%E7%AB%A0 ...

随机推荐

  1. js学习笔记:webpack基础入门(一)

    之前听说过webpack,今天想正式的接触一下,先跟着webpack的官方用户指南走: 在这里有: 如何安装webpack 如何使用webpack 如何使用loader 如何使用webpack的开发者 ...

  2. EntityFramework Core Raw SQL

    前言 本节我们来讲讲EF Core中的原始查询,目前在项目中对于简单的查询直接通过EF就可以解决,但是涉及到多表查询时为了一步到位就采用了原始查询的方式进行.下面我们一起来看看. EntityFram ...

  3. .NET Core中间件的注册和管道的构建(2)---- 用UseMiddleware扩展方法注册中间件类

    .NET Core中间件的注册和管道的构建(2)---- 用UseMiddleware扩展方法注册中间件类 0x00 为什么要引入扩展方法 有的中间件功能比较简单,有的则比较复杂,并且依赖其它组件.除 ...

  4. SSH实战 · 唯唯乐购项目(上)

    前台需求分析 一:用户模块 注册 前台JS校验 使用AJAX完成对用户名(邮箱)的异步校验 后台Struts2校验 验证码 发送激活邮件 将用户信息存入到数据库 激活 点击激活邮件中的链接完成激活 根 ...

  5. Ubuntu 14.04中Elasticsearch集群配置

    Ubuntu 14.04中Elasticsearch集群配置 前言:本文可用于elasticsearch集群搭建参考.细分为elasticsearch.yml配置和系统配置 达到的目的:各台机器配置成 ...

  6. 谈谈一些有趣的CSS题目(一)-- 左边竖条的实现方法

    开本系列,讨论一些有趣的 CSS 题目,抛开实用性而言,一些题目为了拓宽一下解决问题的思路,此外,涉及一些容易忽视的 CSS 细节. 解题不考虑兼容性,题目天马行空,想到什么说什么,如果解题中有你感觉 ...

  7. UWP开发之Mvvmlight实践八:为什么事件注销处理要写在OnNavigatingFrom中

    前一段开发UWP应用的时候因为系统返回按钮事件(SystemNavigationManager.GetForCurrentView().BackRequested)浪费了不少时间.现象就是在手机版的详 ...

  8. angular 源码分析 1 - angularInit()

    angularjs 是个神奇的框架,由于我的好奇,想了解她的内部工作原理,只能一步一步的走进她,靠近她,和她深入的交流. angularjs 的入口是什么样子的呢?一起掀起她的盖头吧. 在这里我只讲方 ...

  9. node.js学习(二)--Node.js控制台(REPL)&&Node.js的基础和语法

    1.1.2 Node.js控制台(REPL) Node.js也有自己的虚拟的运行环境:REPL. 我们可以使用它来执行任何的Node.js或者javascript代码.还可以引入模块和使用文件系统. ...

  10. Java中用得比较顺手的事件监听

    第一次听说监听是三年前,做一个webGIS的项目,当时对Listener的印象就是个"监视器",监视着界面的一举一动,一有动静就触发对应的响应. 一.概述 通过对界面的某一或某些操 ...