1053: [HAOI2007]反素数ant

Time Limit: 10 Sec  Memory Limit: 162 MB
Submit: 1346  Solved: 732
[Submit][Status]

Description

对于任何正整数x,其约数的个数记作g(x)。例如g(1)=1、g(6)=4。
  如果某个正整数x满足:g(x)>g(i) 0<i<x,则称x为反质数。例如,整数1,2,4,6等都是反质数。
现在给定一个数N,你能求出不超过N的最大的反质数么?

Input

一个数N(1<=N<=2,000,000,000)。

Output

不超过N的最大的反质数。

Sample Input

1000

Sample Output

840

HINT

题解:

先筛质数,首先我们知道分解质因数后 i=p1^s1*p2^s2...pk^sk;那么g(i)=(s1+1)*(s2+1)*(s3+1)...(sk+1)

所以我们枚举质数的指数,直接枚举不太好

我们可以发现一个性质,反质数的各个指数一定是不上升的,因为上升的情况我们可以翻转上升的那一段,使得g不变i变小,这个时候搜索就无压力了

一开始没注意,其实前十个质数相乘已经很大了,我们只要前十个就行了

还有就是,要记录现在ans的g,如果有一样的g,要选小的那个

代码:

 const p:array[..] of longint=(,,,,,,,,,);
var n,ans,num:int64;
procedure dfs(x,y,z,k:int64);
var i:longint;
begin
if (num<k) or ((num=k) and (x<ans)) then
begin
ans:=x;num:=k;
end;
for i:= to y do
begin
x:=x*p[z];
if x>n then exit;
dfs(x,i,z+,k*(i+));
end;
end;
procedure main;
begin
readln(n);
dfs(,n,,);
writeln(ans);
end;
begin
main;
end.

HAOI2007反素数的更多相关文章

  1. BZOJ 1053: [HAOI2007]反素数ant dfs

    1053: [HAOI2007]反素数ant 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=1053 Description 对于任何正整 ...

  2. bzoj1053: [HAOI2007]反素数ant

    51nod有一道类似的题...我至今仍然不会写暴搜!!! #include<cstdio> #include<cstring> #include<iostream> ...

  3. 【BZOJ】1053: [HAOI2007]反素数ant

    1053: [HAOI2007]反素数ant Description: g(x)表示x的约数个数,反素数:对于任意的i (i < x),均有g(i) < g(x),则x为反素数:现在输入不 ...

  4. bzoj 1053: [HAOI2007]反素数ant 搜索

    1053: [HAOI2007]反素数ant Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1497  Solved: 821[Submit][Sta ...

  5. BZOJ 1053 [HAOI2007]反素数ant

    1053: [HAOI2007]反素数ant Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1948  Solved: 1094[Submit][St ...

  6. 1053: [HAOI2007]反素数ant

    1053: [HAOI2007]反素数ant Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 3480  Solved: 2036[Submit][St ...

  7. 【BZOJ1053】[HAOI2007]反素数(搜索)

    [BZOJ1053][HAOI2007]反素数(搜索) 题面 BZOJ 洛谷 题解 大力猜一下用不了几个质因子,那么随便爆搜一下就好了. #include<iostream> #inclu ...

  8. 【BZOJ1053】[HAOI2007]反素数

    [BZOJ1053][HAOI2007]反素数 题面 bzoj 洛谷 题解 可以从反素数的定义看出小于等于\(x\)的最大反素数一定是约数个数最多且最小的那个 可以枚举所有的质因数来求反素数,但还是跑 ...

  9. 【BZOJ 1053】 1053: [HAOI2007]反素数ant (反素数)

    1053: [HAOI2007]反素数ant Description 对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4.如果某个正整数x满足:g(x)>g(i) 0&l ...

随机推荐

  1. 初次接触pyqt

    基本了解了pyqt的原理,到http://www.riverbankcomputing.co.uk/news下载安装好qt后,桌面上会出现Qt Designer. 我们可以利用它进行界面的设计,然后保 ...

  2. python 判断 windows 隐藏文件/系统文件

    linux 下隐藏文件是以句号 “.” 开头的文件,根据文件名即可判断是否为隐藏文件. win 下是以文件隐藏属性确定的,所以,只能通过微软的 API 获取隐藏属性来判断是否为隐藏文件. 1. win ...

  3. 编译Linux系统下的jrtplib3.9和jthread1.3(arm和ubuntu)

    最近由于学习需要,需要编译jrtplib,网上的资料基本上都是关于3.9以前的版本,而以前的版本基本上都是通过confiugre来配置生成Makefile,而最近的版本却没有这一项,而是使用cmake ...

  4. velocity语法

    1.声明变量 #set($var = XXX) 右边可以是以下的内容 Variable reference String literal Property reference Method refer ...

  5. WebView重定向新开界面问题-b

    首先介绍下这个问题,iOS上WebView 如果想更贴近native,就要加载新URL的时候新开个界面,但是如果加载的链接有重定向的话,就会在中间开一个空白的界面,这个好烦.然后就是解决这个问题,采用 ...

  6. 1029: [JSOI2007]建筑抢修 - BZOJ

    Description 小刚在玩JSOI提供的一个称之为“建筑抢修”的电脑游戏:经过了一场激烈的战斗,T部落消灭了所有z部落的入侵者.但是T部落的基地里已经有N个建筑设施受到了严重的损伤,如果不尽快修 ...

  7. where, group by, having

    where vs having 当一个sql语句中存在where子句,会先执行where,然后执行group by,然后执行having. 一般来说,only use 'having' when yo ...

  8. The 6th Zhejiang Provincial Collegiate Programming Contest->ProblemA:Second-price Auction

    http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3202 题意:拍卖东西,以第二高价的价格卖给出第一高价的人.输出最后获得东西 ...

  9. 手机开发类型jquery的框架Zepto(API)

    Zepto是一个轻量级的针对现代高级浏览器的JavaScript库, 它与jquery有着类似的api. 如果你会用jquery,那么你也会用zepto. http://www.html-5.cn/M ...

  10. 如何在DJANGO里获取?带数据的东东,基于CBV

    用DEF的,有现成的,而用CLASS的,就要作一下变通. 如下: if self.request.GET: if self.request.GET.get('search_pk'): search_p ...