Building a Space Station
Time Limit: 1000MS   Memory Limit: 30000K
Total Submissions: 5173   Accepted: 2614

Description

You are a member of the space station engineering team, and are assigned a task in the construction process of the station. You are expected to write a computer program to complete the task. 
The space station is made up with a number of units, called cells. All cells are sphere-shaped, but their sizes are not necessarily uniform. Each cell is fixed at its predetermined position shortly after the station is successfully put into its orbit. It is quite strange that two cells may be touching each other, or even may be overlapping. In an extreme case, a cell may be totally enclosing another one. I do not know how such arrangements are possible.

All the cells must be connected, since crew members should be able to walk from any cell to any other cell. They can walk from a cell A to another cell B, if, (1) A and B are touching each other or overlapping, (2) A and B are connected by a `corridor', or (3) there is a cell C such that walking from A to C, and also from B to C are both possible. Note that the condition (3) should be interpreted transitively.

You are expected to design a configuration, namely, which pairs of cells are to be connected with corridors. There is some freedom in the corridor configuration. For example, if there are three cells A, B and C, not touching nor overlapping each other, at least three plans are possible in order to connect all three cells. The first is to build corridors A-B and A-C, the second B-C and B-A, the third C-A and C-B. The cost of building a corridor is proportional to its length. Therefore, you should choose a plan with the shortest total length of the corridors.

You can ignore the width of a corridor. A corridor is built between points on two cells' surfaces. It can be made arbitrarily long, but of course the shortest one is chosen. Even if two corridors A-B and C-D intersect in space, they are not considered to form a connection path between (for example) A and C. In other words, you may consider that two corridors never intersect.

Input

The input consists of multiple data sets. Each data set is given in the following format.


x1 y1 z1 r1 
x2 y2 z2 r2 
... 
xn yn zn rn

The first line of a data set contains an integer n, which is the number of cells. n is positive, and does not exceed 100.

The following n lines are descriptions of cells. Four values in a line are x-, y- and z-coordinates of the center, and radius (called r in the rest of the problem) of the sphere, in this order. Each value is given by a decimal fraction, with 3 digits after the decimal point. Values are separated by a space character.

Each of x, y, z and r is positive and is less than 100.0.

The end of the input is indicated by a line containing a zero.

Output

For each data set, the shortest total length of the corridors should be printed, each in a separate line. The printed values should have 3 digits after the decimal point. They may not have an error greater than 0.001.

Note that if no corridors are necessary, that is, if all the cells are connected without corridors, the shortest total length of the corridors is 0.000.

Sample Input

  1. 3
  2. 10.000 10.000 50.000 10.000
  3. 40.000 10.000 50.000 10.000
  4. 40.000 40.000 50.000 10.000
  5. 2
  6. 30.000 30.000 30.000 20.000
  7. 40.000 40.000 40.000 20.000
  8. 5
  9. 5.729 15.143 3.996 25.837
  10. 6.013 14.372 4.818 10.671
  11. 80.115 63.292 84.477 15.120
  12. 64.095 80.924 70.029 14.881
  13. 39.472 85.116 71.369 5.553
  14. 0

Sample Output

  1. 20.000
  2. 0.000
  3. 73.834

判断两球表面距离是否小于零,即球心距 - 半径1 - 半径2 <= 0,如果满足的话就合并掉,不改变答案值,然后跑一边kruskal就行。

  1. #include <iostream>
  2. #include <cstdio>
  3. #include <string>
  4. #include <queue>
  5. #include <vector>
  6. #include <map>
  7. #include <algorithm>
  8. #include <cstring>
  9. #include <cctype>
  10. #include <cstdlib>
  11. #include <cmath>
  12. #include <ctime>
  13. using namespace std;
  14.  
  15. const int SIZE = ;
  16. int FATHER[SIZE],N,NUM;
  17. struct Node
  18. {
  19. int from,to;
  20. double cost;
  21. }G[SIZE * SIZE];
  22. struct
  23. {
  24. double x,y,z,r;
  25. }TEMP[SIZE];
  26.  
  27. void ini(void);
  28. int find_father(int);
  29. void unite(int,int);
  30. bool same(int,int);
  31. bool comp(const Node &,const Node &);
  32. double kruskal(void);
  33. double dis(double,double,double,double,double,double);
  34. int main(void)
  35. {
  36. while(~scanf("%d",&N))
  37. {
  38. if(!N)
  39. break;
  40. ini();
  41. for(int i = ;i <= N;i ++)
  42. scanf("%lf%lf%lf%lf",&TEMP[i].x,&TEMP[i].y,&TEMP[i].z,&TEMP[i].r);
  43. for(int i = ;i <= N;i ++)
  44. for(int j = i + ;j <= N;j ++)
  45. {
  46. G[NUM].from = i;
  47. G[NUM].to = j;
  48. G[NUM].cost = dis(TEMP[i].x,TEMP[i].y,TEMP[i].z,TEMP[j].x,TEMP[j].y,TEMP[j].z)
  49. - TEMP[i].r - TEMP[j].r;
  50. if(G[NUM].cost <= )
  51. unite(i,j);
  52. NUM ++;
  53. }
  54. sort(G,G + NUM,comp);
  55. printf("%.3f\n",kruskal());
  56. }
  57.  
  58. return ;
  59. }
  60.  
  61. void ini(void)
  62. {
  63. NUM = ;
  64. for(int i = ;i <= N;i ++)
  65. FATHER[i] = i;
  66. }
  67.  
  68. int find_father(int n)
  69. {
  70. if(n == FATHER[n])
  71. return n;
  72. return FATHER[n] = find_father(FATHER[n]);
  73. }
  74.  
  75. void unite(int x,int y)
  76. {
  77. x = find_father(x);
  78. y = find_father(y);
  79.  
  80. if(x == y)
  81. return ;
  82. FATHER[x] = y;
  83. }
  84.  
  85. bool same(int x,int y)
  86. {
  87. return find_father(x) == find_father(y);
  88. }
  89.  
  90. bool comp(const Node & a,const Node & b)
  91. {
  92. return a.cost < b.cost;
  93. }
  94.  
  95. double kruskal(void)
  96. {
  97. double ans = ;
  98.  
  99. for(int i = ;i < NUM;i ++)
  100. if(!same(G[i].from,G[i].to))
  101. {
  102. unite(G[i].from,G[i].to);
  103. ans += G[i].cost;
  104. }
  105. return ans;
  106. }
  107.  
  108. double dis(double x_1,double y_1,double z_1,double x_2,double y_2,double z_2)
  109. {
  110. return sqrt(pow(x_1 - x_2,) + pow(y_1 - y_2,) + pow(z_1 - z_2,));
  111. }

POJ 2031 Building a Space Station (最小生成树)的更多相关文章

  1. POJ 2031 Building a Space Station 最小生成树模板

    题目大意:在三维坐标中给出n个细胞的x,y,z坐标和半径r.如果两个点相交或相切则不用修路,否则修一条路连接两个细胞的表面,求最小生成树. 题目思路:最小生成树树模板过了,没啥说的 #include& ...

  2. POJ 2031 Building a Space Station【经典最小生成树】

    链接: http://poj.org/problem?id=2031 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=22013#probl ...

  3. POJ 2031 Building a Space Station (最小生成树)

    Building a Space Station 题目链接: http://acm.hust.edu.cn/vjudge/contest/124434#problem/C Description Yo ...

  4. poj 2031 Building a Space Station【最小生成树prime】【模板题】

    Building a Space Station Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 5699   Accepte ...

  5. POJ 2031 Building a Space Station

    3维空间中的最小生成树....好久没碰关于图的东西了.....              Building a Space Station Time Limit: 1000MS   Memory Li ...

  6. POJ - 2031 Building a Space Station 三维球点生成树Kruskal

    Building a Space Station You are a member of the space station engineering team, and are assigned a ...

  7. POJ 2031 Building a Space Station (计算几何+最小生成树)

    题目: Description You are a member of the space station engineering team, and are assigned a task in t ...

  8. POJ 2031 Building a Space Station【最小生成树+简单计算几何】

    You are a member of the space station engineering team, and are assigned a task in the construction ...

  9. POJ - 2031C - Building a Space Station最小生成树

    You are a member of the space station engineering team, and are assigned a task in the construction ...

随机推荐

  1. Ubuntu 搭建PHP开发环境

    Ubuntu确实很好玩.有喜欢的命令行,简洁的界面,不同于Window要的感觉.偶尔换换环境工作,学习Linux的思维方式,是一种不错的做 法.之前也折腾过Ubuntu,不过,因为网络的问题,一直没有 ...

  2. 2.里氏替换原则(Liskov Substitution Principle)

    1.定义 里氏替换原则的定义有两种,据说是由麻省理工的一位姓里的女士所提出,因此以其名进行命名. 定义1:如果对一个类型为T1的对象o1,都有类型为T2的对象o2,使得以T1所定义的程序P中在o1全都 ...

  3. sql 将一个表中的数据插入到另一个表中

    列名不一定要相同,只要你在HH中列出要插入列的列表跟select   from   mm表中的选择的列的列表一一对应就可以了,当然两边的数据类型应该是兼容的. 比如:insert   into   h ...

  4. sc7731 Android 5.1 Camera 学习之一Camera 两个对象

    众所周知,在Android中Camera采用了C/S架构,其中Camera server 与 Camera client之间通过Android Binder IPC机制进行通信.在Camera实现的框 ...

  5. Java数据结构之树和二叉树(2)

    从这里始将要继续进行Java数据结构的相关讲解,Are you ready?Let's go~~ Java中的数据结构模型可以分为一下几部分: 1.线性结构 2.树形结构 3.图形或者网状结构 接下来 ...

  6. Codeforces Round #336 (Div. 2) C. Chain Reaction set维护dp

    C. Chain Reaction 题目连接: http://www.codeforces.com/contest/608/problem/C Description There are n beac ...

  7. codeforces Gym 100187A A. Potion of Immortality

    A. Potion of Immortality Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/gym/1001 ...

  8. 两点C#的propertyGrid的使用心得

    最近接触C#的PropertyGrid比较多,得到了两个小心得记录一下. 第1点是关于控制PropertyGrid中属性的只读属性的. 我遇到的问题是这样的,我需要在运行时根据SVN的状态动态控制Pr ...

  9. !"false"==fasle

    首先要搞清楚优先级 !"false" --->false false == false;---->true !""--->true; !&qu ...

  10. window.onload与$.ready的差别

    在做图书管理系统的时候.实用到window.onload(){}方法.可是遇到了一个问题.就是怎么都不运行,究竟是为什么呢?愁了半天.后来经师姐指点改用了$.ready(){}. 在我的浅浅的了解中觉 ...