import java.io.File;
import java.io.IOException;
import java.util.Collection;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.Map.Entry; import org.apache.commons.io.FileUtils; import backtype.storm.Config;
import backtype.storm.LocalCluster;
import backtype.storm.spout.SpoutOutputCollector;
import backtype.storm.task.OutputCollector;
import backtype.storm.task.TopologyContext;
import backtype.storm.topology.OutputFieldsDeclarer;
import backtype.storm.topology.TopologyBuilder;
import backtype.storm.topology.base.BaseRichBolt;
import backtype.storm.topology.base.BaseRichSpout;
import backtype.storm.tuple.Fields;
import backtype.storm.tuple.Tuple;
import backtype.storm.tuple.Values;
import backtype.storm.utils.Utils; /**
* 单词计数
* 监控d:\\test目录下面的文件,统计单词出现的总次数
* 当有新文件出现的时候,也要能解析出来
*
* @author Administrator
*
*/
public class LocalTopologyWordCount { /**
* spout需要继承baserichspout,实现未实现的方法
* @author Administrator
*
*/
public static class DataSourceSpout extends BaseRichSpout{
private Map conf;
private TopologyContext context;
private SpoutOutputCollector collector; /**
* 初始化方法,只会执行一次
* 在这里面可以写一个初始化的代码
* Map conf:其实里面保存的是topology的一些配置信息
* TopologyContext context:topology的上下文,类似于servletcontext
* SpoutOutputCollector collector:发射器,负责向外发射数据(tuple)
*/
@Override
public void open(Map conf, TopologyContext context,
SpoutOutputCollector collector) {
this.conf = conf;
this.context = context;
this.collector = collector;
} /**
* 这个方法是spout中最重要的方法,
* 这个方法会被storm框架循环调用,可以理解为这个方法是在一个while循环之内
* 每调用一次,会向外发射一条数据
*/
@Override
public void nextTuple() {
//获取指定目录下面的新文件,
Collection<File> listFiles = FileUtils.listFiles(new File("d:\\test"), new String[]{"txt"}, true);
//分别读取每个文件
for (File file : listFiles) {
try {
List<String> readLines = FileUtils.readLines(file);
for (String line : readLines) {
//把每一行封装成一个tuple,发射出去
this.collector.emit(new Values(line));
}
FileUtils.moveFile(file, new File(file.getAbsolutePath()+System.currentTimeMillis()));//给文件该名字,否则会一直处理这个文件.
} catch (IOException e) {
e.printStackTrace();
}
}
} /**
* 声明输出字段
*/
@Override
public void declareOutputFields(OutputFieldsDeclarer declarer) {
//给values中的数据起个名字,方便后面的bolt从这个values中取数据
//fields中定义的参数和values中传递的数值是一一对应的
declarer.declare(new Fields("line"));
} } /**
* 自定义bolt需要实现baserichbolt
* @author Administrator
*
*/
public static class SplitBolt extends BaseRichBolt{
private Map stormConf;
private TopologyContext context;
private OutputCollector collector; /**
* 和spout中的open方法意义一样
*/
@Override
public void prepare(Map stormConf, TopologyContext context,
OutputCollector collector) {
this.stormConf = stormConf;
this.context = context;
this.collector = collector;
} /**
* 是bolt中最重要的方法,当spout发射一个tuple出来,execute也会被调用,需要对spout发射出来的tuple进行处理
*/
@Override
public void execute(Tuple input) {
//获取每一行数据进行切割
String line = input.getStringByField("line");
String[] splits = line.split("\t");
//把切割出来的单词一个一个发射出去
for (String word : splits) {
this.collector.emit(new Values(word));
} } //在这没必要定义了,因为execute方法中没有向外发射tuple,所以就不需要声明了。
//如果nextTuple或者execute方法中向外发射了tuple,那么declareOutputFields必须要声明,否则不需要声明
/**
* 声明输出字段
*/
@Override
public void declareOutputFields(OutputFieldsDeclarer declarer) {
declarer.declare(new Fields("word"));
} } /**
* 自定义bolt需要实现baserichbolt
* @author Administrator
*
*/
public static class CountBolt extends BaseRichBolt{
private Map stormConf;
private TopologyContext context;
private OutputCollector collector; /**
* 和spout中的open方法意义一样
*/
@Override
public void prepare(Map stormConf, TopologyContext context,
OutputCollector collector) {
this.stormConf = stormConf;
this.context = context;
this.collector = collector;
} HashMap<String, Integer> hashMap = new HashMap<String, Integer>();
/**
* 是bolt中最重要的方法,当spout发射一个tuple出来,execute也会被调用,需要对spout发射出来的tuple进行处理
*/
@Override
public void execute(Tuple input) {
//获取每一个单词
String word = input.getStringByField("word");
//在map中进行统计
Integer integer = hashMap.get(word);
if(integer==null){
integer=0;
}
integer++;
hashMap.put(word, integer);
//把这个统计结果打印到控制台
Utils.sleep(1000);
System.out.println("=========================================");
for (Entry<String, Integer> entry : hashMap.entrySet()) {
System.out.println(entry);
}
} //在这没必要定义了,因为execute方法中没有向外发射tuple,所以就不需要声明了。
//如果nextTuple或者execute方法中向外发射了tuple,那么declareOutputFields必须要声明,否则不需要声明
/**
* 声明输出字段
*/
@Override
public void declareOutputFields(OutputFieldsDeclarer declarer) {
} }
/**
* 注意:在组装topology的时候,组件的id在定义的时候,名称不能以__开头。__是系统保留的
* @param args
*/
public static void main(String[] args) {
//组装topology
TopologyBuilder topologyBuilder = new TopologyBuilder();
topologyBuilder.setSpout("spout1", new DataSourceSpout());
//.shuffleGrouping("spout1"); 表示让MyBolt接收MySpout发射出来的tuple
topologyBuilder.setBolt("bolt1", new SplitBolt()).shuffleGrouping("spout1");
topologyBuilder.setBolt("bolt2", new CountBolt()).shuffleGrouping("bolt1"); //创建本地storm集群
LocalCluster localCluster = new LocalCluster();
localCluster.submitTopology("wordCountTopology", new Config(), topologyBuilder.createTopology());
}
}

Strom实现单词统计代码的更多相关文章

  1. Storm实现单词统计代码

    import java.io.File; import java.io.IOException; import java.util.Collection; import java.util.HashM ...

  2. 2、 Spark Streaming方式从socket中获取数据进行简单单词统计

    Spark 1.5.2 Spark Streaming 学习笔记和编程练习 Overview 概述 Spark Streaming is an extension of the core Spark ...

  3. Storm基础概念与单词统计示例

    Storm基本概念 Storm是一个分布式的.可靠地.容错的数据流处理系统.Storm分布式计算结构称为Topology(拓扑)结构,顾名思义,与拓扑图十分类似.该拓扑图主要由数据流Stream.数据 ...

  4. java课程课后作业190502之单词统计续集

    第1步:输出单个文件中的前 N 个最常出现的英语单词. 功能1:输出文件中所有不重复的单词,按照出现次数由多到少排列,出现次数同样多的,以字典序排列. 功能2: 指定文件目录,对目录下每一个文件执行统 ...

  5. Spark入门(三)--Spark经典的单词统计

    spark经典之单词统计 准备数据 既然要统计单词我们就需要一个包含一定数量的文本,我们这里选择了英文原著<GoneWithTheWind>(<飘>)的文本来做一个数据统计,看 ...

  6. java源码——文件读写和单词统计

    本文要解决的问题:"键盘输入一段英语语句,将这段话写入content.txt中,然后输出这段话,并且统计语句中英文单词的数目以及各个单词出现的次数." 分析问题知,核心是文件读写和 ...

  7. Java实现单词统计

    原文链接: https://www.toutiao.com/i6764296608705151496/ 单词统计的是统计一个文件中单词出现的次数,比如下面的数据源 其中,最终出现的次数结果应该是下面的 ...

  8. MapReduce 单词统计案例编程

    MapReduce 单词统计案例编程 一.在Linux环境安装Eclipse软件 1.   解压tar包 下载安装包eclipse-jee-kepler-SR1-linux-gtk-x86_64.ta ...

  9. VS2010统计代码行数 [转]

    按CTRL+SHIFT+F (Find in files),勾上支持正则表达式,然后输入搜索内容:  ^:b*[^:b#/]+.*$ 以上表达式的统计可做到:#开头 和 /开头 或者 空行 都不计入代 ...

随机推荐

  1. 查看大图 zoomImage

    添加引用 <link rel="stylesheet" media="screen" type="text/css" href=&qu ...

  2. C++静态成员函数小结 [转]

    类中的静态成员真是个让人爱恨交加的特性.我决定好好总结一下静态类成员的知识点,以便自己在以后面试中,在此类问题上不在被动. 静态类成员包括静态数据成员和静态函数成员两部分. 一 静态数据成员: 类体中 ...

  3. JS瀑布流布局模式(2)

    这个例子与上一篇类似,唯一的区别是排序的方式有差别.上一篇是在高度最小的列里插入内容,这个案例是按顺序放置内容. 两种方法各有优缺点.第一种需要在图片内容加载完成的情况下有效,各个列的图高度差异不大. ...

  4. SAE J1708 DS36277 MAX3444, DS75176B

    http://en.wikipedia.org/wiki/J1708 J1708 SAE J1708 is a standard used for serial communications betw ...

  5. Java学习笔记之==与equals

    一.问题引入 Java测试两个变量是否相等有两种方式:==运算符和equals方法. 但是这二者完全一样吗?考虑下面程序: public class TestEqual { public static ...

  6. JavaScript创建Map对象(转)

    JavaScript 里面本身没有map对象,用JavaScript的Array来实现Map的数据结构. /* * MAP对象,实现MAP功能 * * 接口: * size()     获取MAP元素 ...

  7. 模拟log4j获取日志对象调用所在的类名、方法名及行号

    当我们在记录日志时,每个类中会定义一个日志对象,然后利用这个对象去写日志,那么我们在处理日志时,如何能才能记录日志对象所在的类.方法和行号呢?log4j中已经实现了该功能,那么它是怎么实现的呢? 其实 ...

  8. linux C(hello world)

    1.使用vi/vim进行编写代码并保存为hello_world.c.如下: /* This is my first C program*/ #include <stdio.h> int m ...

  9. corner2

    Original: https://github.com/LondonX/corner2 Backup: https://github.com/eltld/corner2

  10. GPS获取Location 获取所在地点的经纬度

    利用手机获取所在地点的经纬度: Location 在Android 开发中还是经常用到的,比如 通过经纬度获取天气,根据Location 获取所在地区详细Address (比如Google Map 开 ...