Problem A  sum

给出$n$个元素的序列$\{a_i\}$,求出两个不相交连续子序列的最大元素和。

即对于$1 \leq A \leq B \leq C \leq D \leq n$最大化 $\sum\limits_{i=A}^B a_i + \sum\limits_{i=C}^D a_i   $

对于$100\%$的数据满足 $1 \leq n \leq 10^5$ , $0 \leq |a_i| \leq 10^9$

Sol: 考虑一个$O(n^2)$暴力,枚举分割点,左右各求一遍最大连续字段和,然后相加求max。

  显然,上述做法内层$O(n)$的枚举没有必要,我们可以均摊$O(1)$求出前缀、后缀最大连续字段和。

  于是上述暴力算法可以优化到$O(n)$

# include <bits/stdc++.h>
# define int long long
using namespace std;
const int N=1e5+;
int a[N],n,f[N],b[N];
signed main()
{
scanf("%lld",&n);
for (int i=;i<=n;i++) scanf("%lld",&a[i]);
int Max=-0x3f3f3f3f,ret=;
for (int i=;i<=n;i++) {
if (ret<) ret=;
ret+=a[i]; Max=max(Max,ret);
f[i]=Max;
}
Max=-0x3f3f3f3f,ret=;
for (int i=n;i>=;i--) {
if (ret<) ret=;
ret+=a[i]; Max=max(Max,ret);
b[i]=Max;
}
int ans=-0x3f3f3f3f;
for (int i=;i<=n-;i++)
ans=max(f[i]+b[i+],ans);
printf("%lld\n",ans);
return ;
}

A.cpp

Problem B  sequence

维护一个初始全为0的$n$个元素的数列$a_i$,有$m$次操作,每一次可以对区间$l,r$加一个等差数列。

格式为 :"l r s e"表示在$i \ in [l,r] , l < r $对其加一个等差数列,保证等差数列每一项都是整数。

最后询问最终的元素异或和。

对于$100\%$的数据,$1 \leq n,m \leq 5 \times 10^5$,序列中的元素任意时刻都不超过$long \ long$范围

Sol: 对数列的差分数组进行维护,区间$[l,r]$加等差数列就相当于对起始点加一个$s$,对终止点后一位减去$e$

对区间$[l+1,r]$加一个公差$d$。显然可以再对差分数组维护一个差分然后用树状数组完成。

最后求2遍前缀和即可。

  复杂度是$O(n \ log_2 \ n)$

# include<bits/stdc++.h>
# define int long long
using namespace std;
const int N=5e5+;
int c[N],n,m,w[N];
inline int read()
{
int X=,w=; char c=;
while(c<''||c>'') {w|=c=='-';c=getchar();}
while(c>=''&&c<='') X=(X<<)+(X<<)+(c^),c=getchar();
return w?-X:X;
}
# define lowbit(x) ((x)&(-x))
void update(int x,int y){for (;x<=n;x+=lowbit(x)) c[x]+=y;}
int query(int x){int ret=;for (;x;x-=lowbit(x)) ret+=c[x]; return ret;}
void modify(int l,int r,int d){update(l,d); update(r+,-d);}
signed main()
{
n=read();m=read();
for (int i=;i<=m;i++) {
int l=read(),r=read(),s=read(),e=read();
int d=(e-s)/(r-l);
modify(l,l,s);
modify(l+,r,d);
modify(r+,r+,-e);
}
for (int i=;i<=n;i++) w[i]=query(i);
for (int i=;i<=n;i++) w[i]+=w[i-];
int ans=;
for (int i=;i<=n;i++) ans^=w[i];
printf("%lld\n",ans);
return ;
}

B.cpp

Problem C  mod

给定正整数$n$,定义一个长度为$n$ 的排列$A$ 的价值$w_A$:

若不存在长度为$n$ 且字典序比$A$大的排列,则$w=0$;

否则令$B$为长度为$n$的字典序恰好比$A$大1的排列,$w$ 为$A$ 和$B$不相同的位数的个数。

给定$n$和$p$,求所有长度为$n$的排列的$w$的和对$p$取模的结果。

对于$100\%$的数据满足$n \leq 10^7$

Sol : 考虑枚举$1$个元素,可能的取值是$[1,n]$,

而$[2,n]$的问题就变成了一个子问题。 注意到此时还没有计算进的情况,还需要加上$n(n-1)$

  然后若$n$为偶数,那么需要减去一个$d = 2$的等差数列,于是我们的dp方程就会是:

  $f_ i = i \times f_{i-1} +  i \times (i-1) - (i\%2==0)?(i-2):0 $

  复杂度是$O(n)$

# include <bits/stdc++.h>
# define int long long
using namespace std;
int f[],n,p;
signed main()
{
int T; scanf("%lld",&T);
while (T--) {
scanf("%lld%lld",&n,&p);
f[]=f[]=; int t=;
for (int i=;i<=n;i++) {
t^=;
f[t]=(i&)?(f[t^]*i+i*(i-))%p:(f[t^]*i+i*(i-)-i+)%p;
}
printf("%lld\n",(f[t]+p)%p);
}
return ;
}

C.cpp

Problem D   merge

维护$n$个元素$[a_1,a_n]$,初始所有元素都属于不同的集合。

维护两个操作:

1 x y 将$a_x$元素所在集合$S_x$ 与$a_y$元素所在元素$S_y$ 合并

2 x y 将$a_x$元素所在集合$S_x$中所有元素$+y$

对于$100\%$的数据$n\leq 5\times 10^5$

Sol: 对于第一个操作,直接找出$S_x$的代表元素(也就是该子树的树根),然后在根节点累加标记。

  对于第二个操作,直接新增一个节点,把$S_x$的代表元素和$S_y$的代表元素并到这个节点上即可。

  然后最后形成的是一棵森林,然后对于森林里的每一棵树从根节点开始做一遍dfs求出前缀和即是答案。

  注意到这样子每一次暴力向上跳找代表元素这个过程可以用并查集压缩向上跳的路径,原来的树形结构是不能变化的。

  这样子复杂度就是$O(n+m)$了。

# include <bits/stdc++.h>
# define int long long
using namespace std;
const int N=1e6+;
struct rec{ int pre,to;}a[N<<];
int f[N],ans[N],d[N],tot,n,m,head[N],du[N],g[N];
bool vis[N];
int father(int x)
{
if (f[x]==x) return x;
//return father(f[x]);
return f[x]=father(f[x]);
}
void adde(int u,int v)
{
a[++tot].pre=head[u];
a[tot].to=v;
head[u]=tot;
}
void dfs(int u)
{
vis[u]=;
for (int i=head[u];i;i=a[i].pre) {
int v=a[i].to; if (vis[v]) continue;
ans[v]=ans[u]+d[v];
dfs(v);
}
}
signed main()
{
scanf("%lld%lld",&n,&m);
for (int i=;i<=n+m;i++) f[i]=g[i]=i;
int cnt=n;
while (m--) {
int op,x,y; scanf("%lld%lld%lld",&op,&x,&y);
if (op==) {
int fx=father(x),fy=father(y);
++cnt; g[fx]=f[fx]=cnt; g[fy]=f[fy]=cnt;
} else {
int fx=father(x);
d[fx]+=y;
}
}
for (int i=;i<=cnt;i++)
if (i!=g[i]) adde(i,g[i]),adde(g[i],i),du[i]++;
for (int i=;i<=cnt;i++)
if (du[i]==&&!vis[i]) ans[i]=d[i],dfs(i);
for (int i=;i<=n;i++) printf("%lld ",ans[i]);
puts("");
return ;
}

D.cpp

HGOI20190808 省常中互测1的更多相关文章

  1. HGOI 20190816 省常中互测8

    Problem A  有两条以(0,0)为端点,分别经过(a,b),(c,d)的射线,你要求出夹在两条射线中间,且距离(0,0)最近的点(x,y) 对于$100\%$的数据满足$1 \leq T \l ...

  2. HGOI20190814 省常中互测7

    Problem A 中间值 对于$2$个非严格单增序列$\{A_n\} , \{B_n\}$,维护下列两个操作: 1 x y z: (x=0)时将$A_y = z$ , (x=1)时将$B_y = z ...

  3. HGOI20190813 省常中互测6

    Problem A 蛋糕 将$n \times m $大小的蛋糕切成每块为$1 \times 1$大小的$n\times m$块. 交换任意两块蛋糕的切割顺序的方案算作一种. 对于$100 \%$的数 ...

  4. HGOI20190811 省常中互测4

    Problem A magic 给出一个字符串$S$,和数字$n$,要求构造长度为$n$只含有小写字母的字符串$T$, 使得在$T$中存在删除且仅删除一个子串使得$S=T$成立. 输出$T$的构造方案 ...

  5. HGOI20190810 省常中互测3

    Problem A  夏洛特 若当前处在点$(x,y)$下一时刻可以向该点四周任意方向走动一步, 初始在$(0,0)$是否存在一条合法的路线满足下列$n$个限制: 每一个限制形如$t_i , x_i ...

  6. HGOI20190809 省常中互测2

    Problem A 时之终结 构造一个含有$n$个节点的无重边无自环的有向图, 使得从$1$出发,每一次经过一条$(u,v) (u < v)$的边到达节点$n$的方案恰好有$y$种. 对于$10 ...

  7. HGOI20190812 省常中互测5

    Task 1 辩论 有N 个参加辩论的候选人,每个人对这两个议题都有明确的态度,支持或反对.作为组织者,小D 认真研究了每个候选人,并给每个人评估了一个非负的活跃度,他想让活跃度之和尽可能大.选出的候 ...

  8. 【2018集训队互测】【XSY3372】取石子

    题目来源:2018集训队互测 Round17 T2 题意: 题解: 显然我是不可能想出来的……但是觉得这题题解太神了就来搬(chao)一下……Orzpyz! 显然不会无解…… 为了方便计算石子个数,在 ...

  9. 【CH 弱省互测 Round #1 】OVOO(可持久化可并堆)

    Description 给定一颗 \(n\) 个点的树,带边权. 你可以选出一个包含 \(1\) 顶点的连通块,连通块的权值为连接块内这些点的边权和. 求一种选法,使得这个选法的权值是所有选法中第 \ ...

随机推荐

  1. [转帖]开源许可证GPL、BSD、MIT、Mozilla、Apache和LGPL的区别

    开源许可证GPL.BSD.MIT.Mozilla.Apache和LGPL的区别 https://www.geek-workshop.com/thread-1860-1-1.html     liamj ...

  2. Docker 数据卷与容器互联

    Docker是基于Go语言实现的开源容器项目,Docker让开发者可以打包他们的应用以及依赖包到一个可移植的容器中,然后发布到任何流行的 Linux 机器上,也可以实现虚拟化.容器是完全使用沙箱机制, ...

  3. Java后端技术面试汇总(第二套)

    1.Java相关 • Arraylist与LinkedList默认空间是多少:• Arraylist与LinkedList区别与各自的优势List 和 Map 区别:• 谈谈HashMap,哈希表解决 ...

  4. python 短信邮件

    短信邮件 hashlib​- md5:非对称加密,不可逆的,经常用于加密密码然后存储​- 示例:​ ```python import hashlib ​ # 创建hash对象,可以指定需要加密的字符串 ...

  5. 从FBV到CBV一(开始)

    span::selection, .CodeMirror-line > span > span::selection { background: #d7d4f0; }.CodeMirror ...

  6. 因xhost命令和DISPLAY环境变量操作不当导致无法启动Oracle图形化安装界面

    在redhat操作系统上安装Oracle 11.1时,遇到在执行runInstaller后无法启动安装图像化界面,甚是郁闷. 问题现象: 使用Xmanager2.0软件登陆AIX桌面,root用户可以 ...

  7. 04-spring框架—— Spring 集成 MyBatis

    将 MyBatis与 Spring 进行整合,主要解决的问题就是将 SqlSessionFactory 对象交由 Spring来管理.所以,该整合,只需要将 SqlSessionFactory 的对象 ...

  8. jQuery和Prototype的兼容性和冲突的多种解决方法

    有两种情况: 1.先加载Prototype,再加载jQuery. 2.先加载jQuery,再加载Prototype. 针对情况1:先加载Prototype,再加载jQuery.方法一:jQuery 库 ...

  9. php页面加载完毕后再显示购买按钮

    php页面加载完毕后再显示购买按钮 $document.ready(function(){ $("#buybotton").show()})

  10. 【AGC010 C】Cleaning

    题意 有一棵 \(n\) 个点的树,第 \(i\) 个节点有 \(a_i\) 个石子. 每次都可以选择一对不同的叶子节点,这对叶子节点路径上的所有点都必须要有石子.然后去掉这两个叶子节点路径上的每个节 ...