Codeforces Breaking Good
Breaking Good
time limit per test 2 seconds
memory limit per test 256 megabytes
Breaking Good is a new video game which a lot of gamers want to have. There is a certain level in the game that is really difficult even for experienced gamers.
Walter William, the main character of the game, wants to join a gang called Los Hermanos (The Brothers). The gang controls the whole country which consists of n cities with m bidirectional roads connecting them. There is no road is connecting a city to itself and for any two cities there is at most one road between them. The country is connected, in the other words, it is possible to reach any city from any other city using the given roads.
The roads aren't all working. There are some roads which need some more work to be performed to be completely functioning.
The gang is going to rob a bank! The bank is located in city 1. As usual, the hardest part is to escape to their headquarters where the police can't get them. The gang's headquarters is in city n. To gain the gang's trust, Walter is in charge of this operation, so he came up with a smart plan.
First of all the path which they are going to use on their way back from city 1 to their headquarters n must be as short as possible, since it is important to finish operation as fast as possible.
Then, gang has to blow up all other roads in country that don't lay on this path, in order to prevent any police reinforcements. In case of non-working road, they don't have to blow up it as it is already malfunctional.
If the chosen path has some roads that doesn't work they'll have to repair those roads before the operation.
Walter discovered that there was a lot of paths that satisfied the condition of being shortest possible so he decided to choose among them a path that minimizes the total number of affected roads (both roads that have to be blown up and roads to be repaired).
Can you help Walter complete his task and gain the gang's trust?
Input
The first line of input contains two integers n, m (2 ≤ n ≤ 105, ), the number of cities and number of roads respectively.
In following m lines there are descriptions of roads. Each description consists of three integers x, y, z (1 ≤ x, y ≤ n, ) meaning that there is a road connecting cities number x and y. If z = 1, this road is working, otherwise it is not.
Output
In the first line output one integer k, the minimum possible number of roads affected by gang.
In the following k lines output three integers describing roads that should be affected. Each line should contain three integers x, y, z (1 ≤ x, y ≤ n, ), cities connected by a road and the new state of a road. z = 1 indicates that the road between cities x and y should be repaired and z = 0 means that road should be blown up.
You may output roads in any order. Each affected road should appear exactly once. You may output cities connected by a single road in any order. If you output a road, it's original state should be different from z.
After performing all operations accroding to your plan, there should remain working only roads lying on some certain shortest past between city 1 and n.
If there are multiple optimal answers output any.
Examples
input
2 1
1 2 0
output
1
1 2 1
input
4 4
1 2 1
1 3 0
2 3 1
3 4 1
output
3
1 2 0
1 3 1
2 3 0
input
8 9
1 2 0
8 3 0
2 3 1
1 4 1
8 7 0
1 5 1
4 6 1
5 7 0
6 8 0
output
3
2 3 0
1 5 0
6 8 1
Note
In the first test the only path is 1 - 2
In the second test the only shortest path is 1 - 3 - 4
In the third test there are multiple shortest paths but the optimal is 1 - 4 - 6 - 8
大概意思就是给定 n 个点, m 条边的有向图,边权都为 1,一些需要维修。
你需要选择1条 1 到 n 的最短路,将它们修好,并炸毁其它所
有不在路径上的完好的路。
若有多条最短路,选择影响值最小的。
影响值 = 维修的路数 + 炸毁的路数。
我大概想了一下,应该就是找一条最短路上的边权最大。。。
然后这个dp是按照dis转移的,必须是dis + 1才可以满足最短路。。。
但是好像可以分层图啥的。。。不会啊
#include<bits/stdc++.h>
using namespace std;
const int maxn = 1e5 + 5;
struct lpl{
int to, dis;
}lin, from[maxn];
struct ld{
int a, b;
bool operator < (const ld &A)const{
if(a == A.a) return b < A.b;
return a < A.a;
}
}asd;
int n, m, r, sum, dis[maxn], f[maxn];
bool vis[maxn];
vector<int> edge[maxn];
vector<lpl> point[maxn];
queue<int> q;
set<ld> s;
inline void putit()
{
scanf("%d%d", &n, &m);
for(int a, b, i = 1; i <= m; ++i){
scanf("%d%d%d", &a, &b, &lin.dis); sum += lin.dis;
edge[a].push_back(b); edge[b].push_back(a);
lin.to = b; point[a].push_back(lin);
lin.to = a; point[b].push_back(lin);
}
}
inline void spfa()
{
int now, qwe; q.push(1); memset(dis, 0x3f, sizeof(dis)); dis[1] = 0;
while(!q.empty()){
now = q.front(); q.pop(); vis[now] = false;
for(int i = edge[now].size() - 1; i >= 0; --i){
qwe = edge[now][i];
if(dis[qwe] > dis[now] + 1){
dis[qwe] = dis[now] + 1;
if(!vis[qwe]){
vis[qwe] = true; q.push(qwe);
}
}
}
}
}
int dp(int t)
{
if(vis[t]) return f[t];
vis[t] = true;
for(int i = point[t].size() - 1; i >= 0; --i){
int now = point[t][i].to;
if(dis[t] != dis[now] + 1) continue;
if(f[t] <= dp(now) + point[t][i].dis){
f[t] = f[now] + point[t][i].dis;
from[t].to = now; from[t].dis = point[t][i].dis;
}
}
return f[t];
}
inline void workk()
{
printf("%d\n", sum + dis[n] - 2 * dp(n)); int t = n;
while(t != 1){
asd.a = t; asd.b = from[t].to;
if(asd.a > asd.b) swap(asd.a, asd.b); s.insert(asd); t = from[t].to;
}
for(int i = 1; i <= n; ++i){
for(int j = point[i].size() - 1; j >= 0; --j){
lin = point[i][j]; if(lin.to > i) continue;
asd.a = lin.to; asd.b = i;
if(s.count(asd)){
if(!lin.dis) printf("%d %d 1\n", asd.a, asd.b);
}
else{
if(lin.dis) printf("%d %d 0\n", asd.a, asd.b);
}
}
}
}
int main()
{
putit();
spfa();
workk();
return 0;
}
Codeforces Breaking Good的更多相关文章
- Codeforces Round #287 (Div. 2) E. Breaking Good 最短路
题目链接: http://codeforces.com/problemset/problem/507/E E. Breaking Good time limit per test2 secondsme ...
- Codeforces Round #287 (Div. 2) E. Breaking Good [Dijkstra 最短路 优先队列]
传送门 E. Breaking Good time limit per test 2 seconds memory limit per test 256 megabytes input standar ...
- [Codeforces 507E] Breaking Good
[题目链接] https://codeforces.com/contest/507/problem/E [算法] 首先BFS求出1到其余点的最短路 , N到其余点的最短路,记为distA[]和dist ...
- CodeForces 507E Breaking Good 2维权重dij
Breaking Good 题解: 2维权重dij, 先距离最短, 后改变最小. 在这个题中, 如果要改变最小, 则让更多的可用边放进来. 然后可以用pre存下关键边. 代码: ...
- Codeforces Round #287 (Div. 2) E. Breaking Good 路径记录!!!+最短路+堆优化
E. Breaking Good time limit per test 2 seconds memory limit per test 256 megabytes input standard in ...
- Doors Breaking and Repairing CodeForces - 1102C (思维)
You are policeman and you are playing a game with Slavik. The game is turn-based and each turn consi ...
- 【codeforces 507E】Breaking Good
[题目链接]:https://vjudge.net/contest/164884#problem/D [题意] 给你一张图; 图中有些路是完好的;但有些路还没修好; 先不管路有没有修好; 问你从起点到 ...
- Codeforces Round #531 (Div. 3) C. Doors Breaking and Repairing (博弈)
题意:有\(n\)扇门,你每次可以攻击某个门,使其hp减少\(x\)(\(\le 0\)后就不可修复了),之后警察会修复某个门,使其hp增加\(y\),问你最多可以破坏多少扇门? 题解:首先如果\(x ...
- Codeforces Educational Codeforces Round 15 D. Road to Post Office
D. Road to Post Office time limit per test 1 second memory limit per test 256 megabytes input standa ...
随机推荐
- .net 批量导出文件,以ZIP压缩方式导出
1. 首先Nuget ICSharpCode.SharpZipLib <script type="text/javascript"> $(funct ...
- Centos7 安装 clamav
环境 CentOS: 7.x 下载 下载地址 :http://www.clamav.net/downloads,使用目前最新版本为:clamav-0.101.3 使用 wget 下载 wget htt ...
- rabbitmq 客户端崩溃退出
1.创建1个队列 和 创建另1个独占队列 名称相同 即崩溃退出 2..rabbitmq是为了实现实时消息推送的吗?
- javascript 回到顶部效果的实现
demo.js window.onload=function() { var timer=null; var obtn=document.getElementById('btn'); var isTo ...
- windows H2database 安装
转载百度经验 H2是一个开源的.纯java实现的关系数据库,小巧并且使用方便,十分适合作为嵌入式数据库使用 首先打开浏览器进入H2官网http://www.h2database.com/html/ma ...
- hdu4336 Card Collector MinMax 容斥
题目传送门 https://vjudge.net/problem/HDU-4336 http://acm.hdu.edu.cn/showproblem.php?pid=4336 题解 minmax 容 ...
- 在windows的文件添加右键"命令提示符"菜单
1\把以下内容保存为reg文件,然后导入 Windows Registry Editor Version 5.00 [HKEY_LOCAL_MACHINE\SOFTWARE\Classes\*\she ...
- windows下zookeeper单机版安装+dubbo-admin安装注意点
一:zookeeper安装 安转包下载地址:http://www.apache.org/dyn/closer.cgi/zookeeper 复制修改conf下的zoo_sample.cfg为zoo.cf ...
- Vue学习笔记-作用域插槽
有时候我们希望子组件的内容由父组件决定如何展示,这个时候子组件的数据父组件并不能访问到,而作用域插槽的关键之处就在于,父组件能接收来自子组件的slot传递过来的参数. <div id=" ...
- 详解SQL Server 2008工具SQL Server Profiler
一.SQL Profiler工具简介 SQL Profiler是一个图形界面和一组系统存储过程,其作用如下: 1.图形化监视SQL Server查询: 2.在后台收集查询信息: 3.分析性能: 4.诊 ...