Python性能分析工具Profile

代码优化的前提是需要了解性能瓶颈在什么地方,程序运行的主要时间是消耗在哪里,对于比较复杂的代码可以借助一些工具来定位,python 内置了丰富的性能分析工具,如 profile,cProfile 与 hotshot 等。其中 Profiler 是 python 自带的一组程序,能够描述程序运行时候的性能,并提供各种统计帮助用户定位程序的性能瓶颈。Python 标准模块提供三种 profilers:cProfile,profile 以及 hotshot。
profile 的使用非常简单,只需要在使用之前进行 import 即可,也可以在命令行中使用。

使用Profile

测试示例:

import profile
def a():
sum = 0
for i in range(1, 10001):
sum += i
return sum def b():
sum = 0
for i in range(1, 100):
sum += a()
return sum
if __name__ == "__main__":
profile.run("b()")

输出结果:

 104 function calls in 0.094 seconds

   Ordered by: standard name

   ncalls  tottime  percall  cumtime  percall filename:lineno(function)
1 0.000 0.000 0.094 0.094 :0(exec)
1 0.000 0.000 0.000 0.000 :0(setprofile)
1 0.000 0.000 0.094 0.094 <string>:1(<module>)
1 0.000 0.000 0.094 0.094 profile:0(b())
0 0.000 0.000 profile:0(profiler)
99 0.094 0.001 0.094 0.001 test.py:15(a)
1 0.000 0.000 0.094 0.094 test.py:21(b)

  

其中输出每列的具体解释如下:

●ncalls:表示函数调用的次数;

●tottime:表示指定函数的总的运行时间,除掉函数中调用子函数的运行时间;

●percall:(第一个 percall)等于 tottime/ncalls;

●cumtime:表示该函数及其所有子函数的调用运行的时间,即函数开始调用到返回的时间;

●percall:(第二个 percall)即函数运行一次的平均时间,等于 cumtime/ncalls;

●filename:lineno(function):每个函数调用的具体信息;

如果需要将输出以日志的形式保存,只需要在调用的时候加入另外一个参数。如 profile.run(“profileTest()”,”testprof”)。

  

命令行

如果我们不想在程序中调用profile库使用,可以在命令行使用命令。

import os

def a():
sum = 0
for i in range(1, 10001):
sum += i
return sum def b():
sum = 0
for i in range(1, 100):
sum += a()
return sum print b()

运行命令查看性能分析结果

python -m cProfile test.py

将性能分析结果保存到result文件

python -m cProfile -o result test.py

使用pstats来格式化显示结果

python -c "import pstats; p=pstats.Stats('reslut); p.print_stats()"

python -c "import pstats; p=pstats.Stats('result'); p.sort_stats('time').print_stats()

sort_stats支持一下参数:

calls, cumulative, file, line, module, name, nfl, pcalls, stdname, time

  

测试示例:在代码中直接使用profile与stats

import os
def a():
sum = 0
for i in range(1, 10001):
sum += i
return sum
def b():
sum = 0
for i in range(1, 100):
sum += a()
return sum
print b()
import cProfile
#cProfile.run("b()")
cProfile.run("b()", "result")
import pstats
pstats.Stats('result').sort_stats(-1).print_stats()

refence

https://blog.csdn.net/xiemanR/article/details/69398057

https://www.cnblogs.com/wangjian8888/p/6095772.html

https://blog.csdn.net/kongxx/article/details/52216850

http://ju.outofmemory.cn/entry/46805

Python性能分析工具Profile的更多相关文章

  1. Python 性能分析工具简介

    Table of Contents 1. 性能分析和调优工具简介 1.1. Context Manager 1.2. Decorator 1.3. 系统自带的time命令 1.4. python ti ...

  2. Python性能分析工具

    import cProfile import pstats from flask import Flask,jsonify, request @app.route("/test", ...

  3. Android性能分析工具Profile GPU rendering详细介绍

    如何在一个应用中追踪和定位性能问题,甚至在没有它的源代码的情况下?? “Profile GPU rendering”(GPU渲染分析),一款Android4.1所引入的工具.你可以在“设置”应用的“开 ...

  4. cProfile——Python性能分析工具

    Python自带了几个性能分析的模块:profile.cProfile和hotshot,使用方法基本都差不多,无非模块是纯Python还是用C写的.本文介绍cProfile.  例子 import t ...

  5. Python性能分析

    Python性能分析 https://www.cnblogs.com/lrysjtu/p/5651816.html https://www.cnblogs.com/cbscan/articles/33 ...

  6. 如何进行python性能分析?

    在分析python代码性能瓶颈,但又不想修改源代码的时候,ipython shell以及第三方库提供了很多扩展工具,可以不用在代码里面加上统计性能的装饰器,也能很方便直观的分析代码性能.下面以我自己实 ...

  7. 系统级性能分析工具perf的介绍与使用

    测试环境:Ubuntu16.04(在VMWare虚拟机使用perf top存在无法显示问题) Kernel:3.13.0-32 系统级性能优化通常包括两个阶段:性能剖析(performance pro ...

  8. Python 性能剖分工具

    Python 性能剖分工具 眼看着项目即将完成,却被测试人员告知没有通过性能测试,这种情况在开发中屡见不鲜.接下来的工作就是加班加点地找出性能瓶颈,然后进行优化,再进行性能测试,如此这般周而复始直到通 ...

  9. 系统级性能分析工具perf的介绍与使用[转]

    测试环境:Ubuntu16.04(在VMWare虚拟机使用perf top存在无法显示问题) Kernel:3.13.0-32 系统级性能优化通常包括两个阶段:性能剖析(performance pro ...

随机推荐

  1. 【转】Django之Model层的F对象,Q对象以及聚合函数

    转自:https://blog.csdn.net/wsy_666/article/details/86692050 一.F对象: 作用:用于处理类属性(即model的某个列数据),类属性之间的比较.使 ...

  2. 使用WebStorm运行vue项目

    在WebStorm中怎么打开一个已有的项目,这个不用多说,那么如何运行一个vue项目呢? 1.点击下图中右上角的红框. 2.在出现的弹框中选中左上角“+”下的“npm”,如下图所示. 3.选中第二步的 ...

  3. Pyhton实用的format()格式化函数

    Python2.6 开始,新增了一种格式化字符串的函数 str.format(),它增强了字符串格式化的功能. 基本语法是通过 {} 和 : 来代替以前的 % . format 函数可以接受不限个参数 ...

  4. leetcode 4寻找两个有序数组的中位数

    最优解O(log(min(m,n))) /** 之前用合并有序数组的思想做了O((m+n+1)/2),现在试一试O(log(min(m,n))) 基本思路为:通过二分查找较小的数组得到对应的中位数(假 ...

  5. C#接口的实现和继承实践

    1.基本概念 接口是一种契约规范,类似于抽象基类.包括方法,属性,索引器和事件作为成员,这些成员只是作为定义,并不在接口中具体实现. 接口创建时注意以下事项: 继承接口的任何非抽象类都必须实现接口的所 ...

  6. 前端必须掌握的 docker 技能(3)

    概述 作为一个前端,我觉得必须要学会使用 docker 干下面几件事: 部署前端应用 部署 nginx 给部署的 nginx 加上 https 使用 docker compose 进行部署 给 ngi ...

  7. yum安装Apache2.4

    一.系统环境 系统版本为centos6.5最小化安装 # cat /etc/centos-release CentOS release 6.5 (Final) 查看系统自带yum库Apache版本 # ...

  8. LeetCode.860-卖柠檬水找零(Lemonade Change)

    这是悦乐书的第331次更新,第355篇原创 01 看题和准备 今天介绍的是LeetCode算法题中Easy级别的第201题(顺位题号是860).在柠檬水摊上,每杯柠檬水的价格为5美元.客户站在队列中向 ...

  9. 【HBase】二、HBase实现原理及系统架构

      整个Hadoop生态中大量使用了master-slave的主从式架构,如同HDFS中的namenode和datanode,MapReduce中的JobTracker和TaskTracker,YAR ...

  10. js中 json对象的转化 JSON.parse()

    JSON.parse() 方法用来解析JSON字符串,json.parse()将字符串转成json对象.构造由字符串描述的JavaScript值或对象.提供可选的reviver函数用以在返回之前对所得 ...