有N个相同的开关,每个开关都与某些开关有着联系,每当你打开或者关闭某个开关的时候,其他的与此开关相关联的开关也会相应地发生变化,即这些相联系的开关的状态如果原来为开就变为关,如果为关就变为开。

你的目标是经过若干次开关操作后使得最后N个开关达到一个特定的状态。

对于任意一个开关,最多只能进行一次开关操作。

你的任务是,计算有多少种可以达到指定状态的方法。(不计开关操作的顺序)

输入格式

输入第一行有一个数K,表示以下有K组测试数据。

每组测试数据的格式如下:

第一行 一个数N(0 < N < 29)。

第二行 N个0或者1的数,表示开始时N个开关状态。

第三行 N个0或者1的数,表示操作结束后N个开关的状态。

接下来 每行两个数I J,表示如果操作第 I 个开关,第J个开关的状态也会变化。

每组数据以 0 0 结束。

输出格式

如果有可行方法,输出总数,否则输出“Oh,it’s impossible~!!” 。

输入样例:

2
3
0 0 0
1 1 1
1 2
1 3
2 1
2 3
3 1
3 2
0 0
3
0 0 0
1 0 1
1 2
2 1
0 0

输出样例:

4
Oh,it's impossible~!!
题意:有n盏灯,现在给了这n盏灯的初始状态,还有要最终状态,最终状态要通过你进行了x次操作后得到
每个灯最多进行一次操作,其中灯与灯之间有关系,如果开这个灯另一个灯也会改变状态,现在求有多少种操作可以满足达到最终状态 思路:我们可以化成n个式子
aij 代表按j开关会影响i开关,xi代表按i开关 ,begin 代表初始状态,end代表最终状态
a11*x1^a12*x2^a13*x3....=begin^end // 这是计算1开关进行了多少次操作,两边执行次数要相等
......
......
......
...... 这里我们可以用状态压缩代表一行的状态,0位代表常数是多少,1-n位代表系数式为多少,XOR其实也相当于+法,后面矩阵消元的时候也用XOR
本题求的是方案数,我们初值为1,但是一旦有自由元,原先有自由元就代表当前有无数个解,这里只有0,1两种情况
所以答案为 1<<cnt
#include<bits/stdc++.h>
#define maxn 100005
#define mod 1000000007
using namespace std;
typedef long long ll;
ll a[];
int main(){
ll t;
cin>>t;
while(t--){
ll n;
cin>>n;
for(int i=;i<=n;i++) cin>>a[i];
for(int i=;i<=n;i++){
ll z;
cin>>z;
a[i]^=z;
a[i]|=(<<i);
}
ll x,y;
while(cin>>x>>y){
if(x==&&y==) break;
a[y]|=(<<x);
}
ll ans=;
for(int i=;i<=n;i++){
for(int j=i+;j<=n;j++){
if(a[i]<a[j]) swap(a[i],a[j]);//这里求出当前最大元系数
}
if(a[i]==){//等于0,代表系数+常数都等于0,代表当前行全为0,那么直接推出,后面几位全为自由元,因为上面求的是最大值
// cout<<"i:"<<i<<endl;
ans=<<(n-i+);
break;
}
if(a[i]==){//为1代表 常数=1 ,因为是状压形态存储,所以肯定是第0位为1,这里就造成无解情况 0=1
ans=;
break;
}
for(int k=n;k>=;k--){ //这里我们从高到低位枚举到最高的位的元让然后遍历 ,为什么我们不直接用第i位呢,因为我们需要从高到低枚举,前面找的最大值
if(a[i]>>k&){
for(int j=;j<=n;j++){
if(i!=j&&(a[j]>>k&)){
a[j]^=a[i];
}
}
break;
}
}
}
if(ans==){
cout<<"Oh,it's impossible~!!"<<endl;
}
else{
cout<<ans<<endl;
}
}
}

 

AcWing 208. 开关问题 (高斯消元+状压)打卡的更多相关文章

  1. POJ 1753 Flip Game(高斯消元+状压枚举)

    Flip Game Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 45691   Accepted: 19590 Descr ...

  2. loj2542 「PKUWC2018」随机游走 MinMax 容斥+树上高斯消元+状压 DP

    题目传送门 https://loj.ac/problem/2542 题解 肯定一眼 MinMax 容斥吧. 然后问题就转化为,给定一个集合 \(S\),问期望情况下多少步可以走到 \(S\) 中的点. ...

  3. POJ - 1681: Painter's Problem (开关问题-高斯消元)

    pro:开关问题,同上一题. 不过只要求输出最小的操作步数,无法完成输出“inf” sol:高斯消元的解对应的一组合法的最小操作步数. #include<bits/stdc++.h> #d ...

  4. POJ - 1222: EXTENDED LIGHTS OUT (开关问题-高斯消元)

    pro:给定5*6的灯的状态,如果我们按下一个灯的开关,它和周围4个都会改变状态.求一种合法状态,使得终状态全为关闭: sol:模2意义下的高斯消元. 终于自己手打了一个初级板子. #include& ...

  5. POJ 3185 The Water Bowls 【一维开关问题 高斯消元】

    任意门:http://poj.org/problem?id=3185 The Water Bowls Time Limit: 1000MS   Memory Limit: 65536K Total S ...

  6. POJ 1830 开关问题 高斯消元,自由变量个数

    http://poj.org/problem?id=1830 如果开关s1操作一次,则会有s1(记住自己也会变).和s1连接的开关都会做一次操作. 那么设矩阵a[i][j]表示按下了开关j,开关i会被 ...

  7. AcWing 209. 装备购买 (高斯消元线性空间)打卡

    脸哥最近在玩一款神奇的游戏,这个游戏里有 n 件装备,每件装备有 m 个属性,用向量z[i]=(ai,1,ai,2,..,ai,m)z[i]=(ai,1,ai,2,..,ai,m) 表示,每个装备需要 ...

  8. poj1830 开关问题[高斯消元]

    其实第一反应是双向BFS或者meet in middle,$2^{14}$的搜索量,多测,应该是可以过的,但是无奈双向BFS我只写过一题,已经不会写了. 发现灯的操作情况顺序不影响结果,因为操作相当于 ...

  9. POJ 1830 开关问题 (高斯消元)

    题目链接 题意:中文题,和上篇博客POJ 1222是一类题. 题解:如果有解,解的个数便是2^(自由变元个数),因为每个变元都有两种选择. 代码: #include <iostream> ...

随机推荐

  1. APICloud框架——总结一下最近开发APP遇到的一些问题 (三)

    ajax报错 Uncaught DOMException: Failed to execute 'send' on 'XMLHttpRequest': Failed to load 需要在服务器环境下 ...

  2. vue项目打包之后原本好的样式变得不好了的原因分析

    这个主要是打包的过程将所有的css文件进行归类压缩,导致原先其他文件里的样式对当前的产生了影响,应该有同样的类名了.怎么改?要么改类名,要么用scope,scss的写法.

  3. 15 个最佳 jQuery 翻书效果插件

    本文为你带来15个非常实用的.实现类似翻书效果的jQuery插件,你可以很容易地整合到你的web应用中,提升用户体验. 1.  BookBlock BookBlock可以将任何内容(如图像.文本)创建 ...

  4. php开发面试题---禁用cookie之后,如何使用session

    php开发面试题---禁用cookie之后,如何使用session 一.总结 一句话总结: 在每个url后面自动加上PHPSESSID的值即可,用户禁止cookie后,服务器仍会将sessionId以 ...

  5. 测开之路三十五:css引入

    CSS是一种定义样式结构,如字体.颜色.位置等的语言,被用于描述网页上的信息格式化和现实的方式.CSS样式可以直接存储于HTML网页或者单独的样式单文件.无论哪一种方式,样式单包含将样式应用到指定类型 ...

  6. TList TObjectList的区别和使用

    所在的单元 TList(Classes.pas) TObjectList(Contnrs.pas) TObjectList对象的创建方法有一个参数: constructor TObjectList.C ...

  7. spring boot 尚桂谷学习笔记05 ---Web

    ------web 开发登录功能------ 修改login.html文件:注意加粗部分为 msg 字符串不为空时候 才进行显示 <!DOCTYPE html> <!-- saved ...

  8. 爬虫(一)—— 请求库(一)requests请求库

    目录 requests请求库 爬虫:爬取.解析.存储 一.请求 二.响应 三.简单爬虫 四.requests高级用法 五.session方法(建议使用) 六.selenium模块 requests请求 ...

  9. js的浏览器判断方法

    使用navigator.userAgent来判断浏览器类型. 1.浏览器版本号函数: var br=navigator.userAgent.toLowerCase();   var browserVe ...

  10. spring cloud学习--eureka 02

    开启eureka client的注解@EnableDiscoveryClient的功能类DiscoveryClient梳理图 获取server url位于类EndpointUtils的getServi ...