题目

设\(f_i\)表示从\((a-4i,b-4i,c-4i,d-4i)\)中选\(n-4i\)个排队的方案数。

那么我们可以容斥,答案为\(\sum\limits_{i=0}^{lim}(-1)^i{n-3i\choose i}f_i\)。

考虑一下这个\(f\),它就是四个指数型生成函数卷起来\((\sum\limits_{i=0}^a\frac{x^i}{i!})(\sum\limits_{i=0}^b\frac{x^i}{i!})(\sum\limits_{i=0}^c\frac{x^i}{i!})(\sum\limits_{i=0}^d\frac{x^i}{i!})\)。

\(f_i\)就是\(x^i\)的系数乘上\((n-4i)!\)。

我们考虑分成两半,前面是\((\sum\limits_{i=0}^a\frac{x^i}{i!})(\sum\limits_{i=0}^b\frac{x^i}{i!})\),后面是\((\sum\limits_{i=0}^c\frac{x^i}{i!})(\sum\limits_{i=0}^d\frac{x^i}{i!})\)。

每次修改相当于\(a,b,c,d\)都减一,这样子修改是\(O(n)\)的。求某一位的值可以直接暴力卷,也是\(O(n)\)的。

所以就做到了\(O(n^2)\)。

#include<bits/stdc++.h>
using namespace std;
const int N=1007,P=998244353;
int n,a,b,c,d,inv[N],fac[N],ifac[N],f[N],g[N];
void inc(int &a,int b){a+=b,a=a>=P? a-P:a;}
void dec(int &a,int b){a-=b,a=a<0? a+P:a;}
int mul(int a,int b){return 1ll*a*b%P;}
int C(int n,int m){return mul(mul(fac[n],ifac[m]),ifac[n-m]);}
void mns(int n,int m,int *f)
{
for(int i=0;i<=n;++i) dec(f[i+m],mul(ifac[i],ifac[m]));
for(int i=0;i<m;++i) dec(f[i+n],mul(ifac[i],ifac[n]));
}
int cal(int n)
{
int s=0;
for(int i=0;i<=n;++i) inc(s,mul(f[i],g[n-i]));
return mul(s,fac[n]);
}
int main()
{
cin>>n>>a>>b>>c>>d;int i,j,ans=0,x;
for(inv[1]=1,i=2;i<N;++i) inv[i]=mul(P-P/i,inv[P%i]);
for(fac[0]=ifac[0]=i=1;i<N;++i) fac[i]=mul(fac[i-1],i),ifac[i]=mul(ifac[i-1],inv[i]);
for(i=0;i<=a;++i) for(j=0;j<=b;++j) inc(f[i+j],mul(ifac[i],ifac[j]));
for(i=0;i<=c;++i) for(j=0;j<=d;++j) inc(g[i+j],mul(ifac[i],ifac[j]));
ans=cal(n);
for(i=1;i*4<=n&&a&&b&&c&&d;++i,--a,--b,--c,--d) mns(a,b,f),mns(c,d,g),x=mul(cal(n-i*4),C(n-i*3,i)),i&1? dec(ans,x):inc(ans,x);
printf("%d",ans);
}

Luogu P5339 [TJOI2019]唱、跳、rap和篮球的更多相关文章

  1. 【题解】Luogu P5339 [TJOI2019]唱、跳、rap和篮球

    原题传送门 这题zsy写的是\(O(n^2)\),还有NTT\(O(n^2\log n)\)的做法.我的是暴力,\(O(\frac{a b n}{4})\),足够通过 考虑设\(f(i)\)表示序列中 ...

  2. [bzoj5510]唱跳rap和篮球

    显然答案可以理解为有(不是仅有)0对情况-1对情况+2对情况-- 考虑这个怎么计算,先计算这t对情况的位置,有c(n-3t,t)种情况(可以理解为将这4个点缩为1个,然后再从中选t个位置),然后相当于 ...

  3. p5339 [TJOI2019]唱、跳、rap和篮球

    分析  代码 #include<bits/stdc++.h> using namespace std; #define int long long ; ; ],inv[],G,cc[][] ...

  4. 将Android手机无线连接到Ubuntu实现唱跳Rap

    您想要将Android设备连接到Ubuntu以传输文件.查看Android通知.以及从Ubuntu桌面发送短信 – 你会怎么做?将文件从手机传输到PC时不要打电话给自己:使用GSConnect就可以. ...

  5. [TJOI2019]唱、跳、rap和篮球_生成函数_容斥原理_ntt

    [TJOI2019]唱.跳.rap和篮球 这么多人过没人写题解啊 那我就随便说说了嗷 这题第一步挺套路的,就是题目要求不能存在balabala的时候考虑正难则反,要求必须存在的方案数然后用总数减,往往 ...

  6. [TJOI2019]唱、跳、rap和篮球——NTT+生成函数+容斥

    题目链接: [TJOI2019]唱.跳.rap和篮球 直接求不好求,我们考虑容斥,求出至少有$i$个聚集区间的方案数$ans_{i}$,那么最终答案就是$\sum\limits_{i=0}^{n}(- ...

  7. [luogu5339] [TJOI2019]唱、跳、rap和篮球(容斥原理+组合数学)(不用NTT)

    [luogu5339] [TJOI2019]唱.跳.rap和篮球(容斥原理+组合数学)(不用NTT) 题面 略 分析 首先考虑容斥,求出有i堆人讨论的方案. 可以用捆绑法,把每堆4个人捆绑成一组,其他 ...

  8. 「TJOI2019」唱、跳、rap 和篮球 题解

    题意就不用讲了吧-- 鸡你太美!!! 题意: 有 \(4\) 种喜好不同的人,分别最爱唱.跳. \(rap\).篮球,他们个数分别为 \(A,B,C,D\) ,现从他们中挑选出 \(n\) 个人并进行 ...

  9. [TJOI2019]唱,跳,rap,篮球(生成函数,组合数学,NTT)

    算是补了个万年大坑了吧. 根据 wwj 的题解(最准确),设一个方案 \(S\)(不一定合法)的鸡你太美组数为 \(w(S)\). 答案就是 \(\sum\limits_{S}[w(S)=0]\). ...

随机推荐

  1. jquery 判断文字是否超出div出现三个点的省略号

    现在有个需求,就是一个div宽度固定,但是文字可能会超出,超出出现三个点省略,然后鼠标划入的时候显示全部,不超出鼠标划入就不显示,这就意味着要判断文字是否超出了 参考代码 <html lang= ...

  2. 对vue的solt的理解

    //父 <children> <span>12345</span>//这边不会显示 </children> //子 components: { chil ...

  3. $.param()序列化对象

    1.$.param(): param() 方法创建数组或对象的序列化表示形式. 序列化的值可在生成 AJAX 请求时用于 URL 查询字符串中. 第一行是原始数据,第二行是序列化后的.$.param( ...

  4. UVa 1602 Lattice Animals (STL && 生成n连块 && 无方向形状判重)

    题意 : 给定一个 w * h 的 矩阵,在矩阵中找不同n个连通块的个数(旋转,翻转,平移算作一种) 分析 : 这题的关键点有两个 ① 生成n连块并且存储起来(因为题目是多测试用例,如果每一次都重新生 ...

  5. #419 Div2 Problem B Karen and Coffee (统计区间重叠部分 && 前缀和)

    题目链接 :http://codeforces.com/contest/816/problem/B 题意 :给出 n 表示区间个数,限定值 k 以及问询次数 q,当一个数被大于或等于 k 个区间重复覆 ...

  6. HDU 6656 Kejin Player

    hdu题面 Time limit 5000 ms Memory limit 524288 kB OS Windows 解题思路 因为升级只能一级一级地升,所以所求期望满足了区间加的性质,可以一级一级地 ...

  7. 指定文件或文件夹直接提交到svn指定目录

    我这里先说两种方法第一种:1.先将那个目录checkout下来2.将要添加的文件或者文件夹放到这个目录中3.右击文件执行svn菜单中的add命令4.右击文件执行svn菜单中的commit命令第二种:如 ...

  8. (74)c++再回顾一继承和派生

    一:继承和派生 0.默认构造函数即不带参数的构造函数或者是系统自动生成的构造函数.每一个类的构造函数可以有多个,但是析构函数只能有一个. 1.采用公用public继承方式,则基类的公有成员变量和成员函 ...

  9. 【Win32 API】远程工具调用

    前言 有时候,影城报障需要远程过去重现和处理,如果电脑没有安装远程工具的话,还需要营业员下载和安装,然后将账号密码发送过来,这样一来一回操作繁琐也浪费时间,所以我们可以设想一下这种场景,售票员点击在p ...

  10. jquery版本轮播图(es5版本,兼容高)

    优势:基于es5,兼容高.切换动画css配置,轻量,不包含多余代码,可扩展性很高,多个轮播图不会冲突,可配置独有namespace 注: 1.项目需要所写,所以只写了页码的切换,未写上一页下一页按钮, ...