题目如下:

We have a sequence of books: the i-th book has thickness books[i][0] and height books[i][1].

We want to place these books in order onto bookcase shelves that have total width shelf_width.

We choose some of the books to place on this shelf (such that the sum of their thickness is <= shelf_width), then build another level of shelf of the bookcase so that the total height of the bookcase has increased by the maximum height of the books we just put down.  We repeat this process until there are no more books to place.

Note again that at each step of the above process, the order of the books we place is the same order as the given sequence of books.  For example, if we have an ordered list of 5 books, we might place the first and second book onto the first shelf, the third book on the second shelf, and the fourth and fifth book on the last shelf.

Return the minimum possible height that the total bookshelf can be after placing shelves in this manner.

Example 1:

Input: books = [[1,1],[2,3],[2,3],[1,1],[1,1],[1,1],[1,2]], shelf_width = 4
Output: 6
Explanation:
The sum of the heights of the 3 shelves are 1 + 3 + 2 = 6.
Notice that book number 2 does not have to be on the first shelf.

Constraints:

  • 1 <= books.length <= 1000
  • 1 <= books[i][0] <= shelf_width <= 1000
  • 1 <= books[i][1] <= 1000

解题思路:比起大神们的算法,我的dp算法多了一维,差距还是很大的。记dp[i][j] = v 表示第i本书是第j层的最后一本书时,书架第0层到第j层的高度的最小值是v。如果第j-1层的最后一本书是k,那么有dp[i][j] = min(dp[i][j],dp[k][j-1] + max(books[k+1] ~books[i])。有了这个状态转移方程,接下来就是求k的可能取值,每一层至少要有一本书,所以k的最大值只能是i-1,最小值则要通过计算得出,详见代码。

代码如下:

class Solution(object):
def minHeightShelves(self, books, shelf_width):
"""
:type books: List[List[int]]
:type shelf_width: int
:rtype: int
"""
dp = [[float('inf') for i in range(len(books))] for i in range(len(books))]
dp[0][0] = books[0][1] width = 0
level = 0
level_list_per_item = []
for i in range(len(books)):
if width + books[i][0] <= shelf_width:
level_list_per_item.append(level)
width += books[i][0]
else:
level += 1
level_list_per_item.append(level)
width = books[i][0] for i in range(1,len(books)):
for j in range(level_list_per_item[i],i+1):
if j > 0:
dp[i][j] = min(dp[i][j],dp[i-1][j-1] + books[i][1])
row_width = books[i][0]
row_max_height = books[i][1]
for k in range(i-1,j-2,-1):
if row_width + books[k][0] <= shelf_width:
row_width += books[k][0]
row_max_height = max(row_max_height,books[k][1])
if k == 0:
dp[i][j] = min(dp[i][0] ,row_max_height)
continue
dp[i][j] = min(dp[i][j],dp[k-1][j-1]+ row_max_height)
else:
break
#print dp
return min(dp[-1])

【leetcode】1105. Filling Bookcase Shelves的更多相关文章

  1. LeetCode 1105. Filling Bookcase Shelves

    原题链接在这里:https://leetcode.com/problems/filling-bookcase-shelves/ 题目: We have a sequence of books: the ...

  2. 【LeetCode】Minimum Depth of Binary Tree 二叉树的最小深度 java

    [LeetCode]Minimum Depth of Binary Tree Given a binary tree, find its minimum depth. The minimum dept ...

  3. 【Leetcode】Pascal&#39;s Triangle II

    Given an index k, return the kth row of the Pascal's triangle. For example, given k = 3, Return [1,3 ...

  4. 53. Maximum Subarray【leetcode】

    53. Maximum Subarray[leetcode] Find the contiguous subarray within an array (containing at least one ...

  5. 27. Remove Element【leetcode】

    27. Remove Element[leetcode] Given an array and a value, remove all instances of that value in place ...

  6. 【刷题】【LeetCode】007-整数反转-easy

    [刷题][LeetCode]总 用动画的形式呈现解LeetCode题目的思路 参考链接-空 007-整数反转 方法: 弹出和推入数字 & 溢出前进行检查 思路: 我们可以一次构建反转整数的一位 ...

  7. 【刷题】【LeetCode】000-十大经典排序算法

    [刷题][LeetCode]总 用动画的形式呈现解LeetCode题目的思路 参考链接 000-十大经典排序算法

  8. 【leetcode】893. Groups of Special-Equivalent Strings

    Algorithm [leetcode]893. Groups of Special-Equivalent Strings https://leetcode.com/problems/groups-o ...

  9. 【leetcode】657. Robot Return to Origin

    Algorithm [leetcode]657. Robot Return to Origin https://leetcode.com/problems/robot-return-to-origin ...

随机推荐

  1. 【java基础之异常】死了都要try

    目录 1.异常 1.1 异常概念 1.2 异常体系 1.3 异常分类 1.4 异常的产生过程解析 2. 异常的处理 2.1 抛出异常throw 2.2 Objects非空判断 2.3 声明异常thro ...

  2. js在页面中添加一个元素 —— 添加弹幕

    参考地址 [往下拉 —— 使用HTML DOM appendChild() 方法实现元素的添加 ] 一.创建 HTML <div class="right_liuyan"&g ...

  3. [深度概念]·Attention Model(注意力模型)学习笔记

    此文源自一个博客,笔者用黑体做了注释与解读,方便自己和大家深入理解Attention model,写的不对地方欢迎批评指正.. 1.Attention Model 概述 深度学习里的Attention ...

  4. RSA加密 抛异常 algid parse error, not a sequence

    JDK1.8环境 参考:BouncyCastle的使用:https://blog.csdn.net/qq_29583513/article/details/78866461 可解决 公钥解密 私钥加密 ...

  5. windows如何使用bat快速安装计划任务?

    关键词:windows定时任务,schtasks,at ,bat schtasks 部分转自: https://www.cnblogs.com/yumianhu/p/3710743.html at的详 ...

  6. 洛谷 P2051 中国象棋 题解

    题面 状态可能不太好想,设f[i][j][k]表示前i行其中有j行是放一个炮,有k行是放两个炮的合法方案数: 那么: f[i+1][j][k]+=f[i][j][k]     在这一行不放任何棋子: ...

  7. 利用ansible进行主机信息收集

    --- - hosts: myjob gather_facts: True vars: IP: "{{ ansible_default_ipv4['address'] }}" HO ...

  8. $Prufer$序列

    \(Prufer\)序列 \(Prufer\)序列与树的相互转换: 树->\(Prufer\)序列 找到一个编号最小的叶子结点,把这个点删掉并且把跟他连着的那个点的编号加入\(Prufer\)序 ...

  9. Codeforces 1140F Extending Set of Points (线段树分治+并查集)

    这题有以下几个步骤 1.离线处理出每个点的作用范围 2.根据线段树得出作用范围 3.根据分治把每个范围内的点记录和处理 #include<bits/stdc++.h> using name ...

  10. Linux命令基础#1

    系统基础 三大部件:CPU 内存 IO 1.CPU :运算器 控制器 存储器 2.内存:CPU的数据只能从内存读取,且内存数据有易失性(页面) 3.IO:控制总线 数据总线(一个IO) OS原理: O ...