在神经网络中weight decay
weight decay(权值衰减)的最终目的是防止过拟合。在损失函数中,weight decay是放在正则项(regularization)前面的一个系数,正则项一般指示模型的复杂度,所以weight decay的作用是调节模型复杂度对损失函数的影响,若weight decay很大,则复杂的模型损失函数的值也就大。
momentum是梯度下降法中一种常用的加速技术。对于一般的SGD,其表达式为,沿负梯度方向下降。而带momentum项的SGD则写生如下形式:
其中即momentum系数,通俗的理解上面式子就是,如果上一次的momentum(即)与这一次的负梯度方向是相同的,那这次下降的幅度就会加大,所以这样做能够达到加速收敛的过程。
三、normalization。如果我没有理解错的话,题主的意思应该是batch normalization吧。batch normalization的是指在神经网络中激活函数的前面,将按照特征进行normalization,这样做的好处有三点:
1、提高梯度在网络中的流动。Normalization能够使特征全部缩放到[0,1],这样在反向传播时候的梯度都是在1左右,避免了梯度消失现象。
2、提升学习速率。归一化后的数据能够快速的达到收敛。
3、减少模型训练对初始化的依赖。
作者:陈永志
链接:https://www.zhihu.com/question/24529483/answer/114711446
来源:知乎
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
在神经网络中weight decay的更多相关文章
- PyTorch 中 weight decay 的设置
先介绍一下 Caffe 和 TensorFlow 中 weight decay 的设置: 在 Caffe 中, SolverParameter.weight_decay 可以作用于所有的可训练参数, ...
- weight decay(权值衰减)、momentum(冲量)和normalization
一.weight decay(权值衰减)的使用既不是为了提高你所说的收敛精确度也不是为了提高收敛速度,其最终目的是防止过拟合.在损失函数中,weight decay是放在正则项(regularizat ...
- 权重衰减(weight decay)与学习率衰减(learning rate decay)
本文链接:https://blog.csdn.net/program_developer/article/details/80867468“微信公众号” 1. 权重衰减(weight decay)L2 ...
- 【tf.keras】AdamW: Adam with Weight decay
论文 Decoupled Weight Decay Regularization 中提到,Adam 在使用时,L2 与 weight decay 并不等价,并提出了 AdamW,在神经网络需要正则项时 ...
- 一文弄懂神经网络中的反向传播法——BackPropagation【转】
本文转载自:https://www.cnblogs.com/charlotte77/p/5629865.html 一文弄懂神经网络中的反向传播法——BackPropagation 最近在看深度学习 ...
- weight decay 和正则化caffe
正则化是为了防止过拟合,因为正则化能降低权重 caffe默认L2正则化 代码讲解的地址:http://alanse7en.github.io/caffedai-ma-jie-xi-4/ 重要的一个回答 ...
- 浅谈神经网络中的bias
1.什么是bias? 偏置单元(bias unit),在有些资料里也称为偏置项(bias term)或者截距项(intercept term),它其实就是函数的截距,与线性方程 y=wx+b 中的 b ...
- 神经网络中的反向传播法--bp【转载】
from: 作者:Charlotte77 出处:http://www.cnblogs.com/charlotte77/ 一文弄懂神经网络中的反向传播法——BackPropagation 最近在看深度学 ...
- 【深度学习篇】--神经网络中的池化层和CNN架构模型
一.前述 本文讲述池化层和经典神经网络中的架构模型. 二.池化Pooling 1.目标 降采样subsample,shrink(浓缩),减少计算负荷,减少内存使用,参数数量减少(也可防止过拟合)减少输 ...
随机推荐
- 使用feign上传图片
1.添加依赖,支持SpringEncoder <dependency> <groupId>io.github.openfeign.form</groupId> &l ...
- 阿里云对象存储OSS
阿里云的产品种类繁多,今天让我们一起来了解下对象存储(Object Storage Service,简称OSS)吧! 什么是对象存储呢? 简单来说,对象存储OSS是阿里云提供的海量.安全和高可靠的云存 ...
- MYSQL join 优化 --JOIN优化实践之快速匹配
MySQL的JOIN(四):JOIN优化实践之快速匹配 优化原则:小表驱动大表,被驱动表建立索引有效,驱动表建立索引基本无效果.A left join B :A是驱动表,B是被驱动表:A right ...
- hashMap怎样解决hash冲突
通过链表的方式处理: java1.7是单向链表 jvav1.8在数量小于8时是单向链表,大于8就是红黑树,查找方式遍历判断 解决冲突的方式很多,例如再hash,再散列(开放地址法,探测再散列)
- 自动生成ID
public class IdUtil { /** * * @return 返回时间id,类似于20191217195622 */ public static String timeId(){ Dat ...
- Entity Framework Core Relationship的学习笔记
说明 此例筛选了感兴趣及常用部分 参考文献 https://docs.microsoft.com/en-us/ef/core/modeling/relationships One to Many Ma ...
- spring boot本地开发与docker容器化部署的差异
spring boot本地开发与docker容器化部署的差异: 1. 文件路径及文件名区别大小写: 本地开发环境为windows操作系统,是忽略大小写的,但容器中区分大小写 2. docker中的容器 ...
- SpringMVC整体架构
总结: 1. 用户发起请求到前端控制器(DispatchServlet): 2. 前端控制器没有处理业务逻辑的能力,需要找到具体的模型对象处理(Handler),到处理器映射器中查找Handler对象 ...
- java实现spark常用算子之count
import org.apache.spark.SparkConf;import org.apache.spark.api.java.JavaRDD;import org.apache.spark.a ...
- html/css弹性布局的几大常用属性详解
弹性布局的名称概念: 1.容器:需要添加弹性布局的父元素:项目:弹性布局容器中的每一个子元素,称为项目. 2.主轴:在弹性布局中,我们会通过属性规定水平/垂直方向(flex-direction)为主轴 ...