http://acm.hdu.edu.cn/showproblem.php?pid=6736

Forest Program

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)
Total Submission(s): 299    Accepted Submission(s): 111

Problem Description
The
kingdom of Z is fighting against desertification these years since
there are plenty of deserts in its wide and huge territory. The deserts
are too arid to have rainfall or human habitation, and the only
creatures that can live inside the deserts are the cactuses. In this
problem, a cactus in desert can be represented by a cactus in graph
theory.
In graph theory, a cactus is a connected undirected graph
with no self-loops and no multi-edges, and each edge can only be in at
most one simple cycle. While a tree in graph theory is a connected
undirected acyclic graph. So here comes the idea: just remove some edges
in these cactuses so that the remaining connected components all become
trees. After that, the deserts will become forests, which can halt
desertification fundamentally.
Now given an undirected graph with n
vertices and m edges satisfying that all connected components are
cactuses, you should determine the number of schemes to remove edges in
the graph so that the remaining connected components are all trees.
Print the answer modulo 998244353.
Two schemes are considered to be different if and only if the sets of removed edges in two schemes are different.
 
Input
The
first line contains two non-negative integers n, m (1 ≤ n ≤ 300 000, 0 ≤
m ≤ 500 000), denoting the number of vertices and the number of edges
in the given graph.
Next m lines each contains two positive integers
u, v (1 ≤ u, v ≤ n, u = v), denoting that vertices u and v are connected
by an undirected edge.
It is guaranteed that each connected component in input graph is a cactus.
 
Output
Output a single line containing a non-negative integer, denoting the answer modulo 998244353.
 
Sample Input
3 3
1 2
2 3
3 1
6 6
1 2
2 3
3 1
2 4
4 5
5 2
 
Sample Output
7
49
 
Source
 
Recommend
chendu   |   We have carefully selected several similar problems for you:  6742 6741 6740 6739 6738
//#include <bits/stdc++.h>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <iostream>
#include <algorithm>
#include <iostream>
#include <cstdio>
#include <string>
#include <cstring>
#include <stdio.h>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <string.h>
#include <vector>
#define ME(x , y) memset(x , y , sizeof(x))
#define SF(n) scanf("%d" , &n)
#define rep(i , n) for(int i = 0 ; i < n ; i ++)
#define INF 0x3f3f3f3f
#define mod 998244353
#define PI acos(-1)
using namespace std;
typedef long long ll ;
const int maxn = ;
const int maxm = ;
ll n , m , sum , ans , vis[maxn] , dfn[maxn] , cnt;
ll head[maxn];
struct Edge
{
ll to , next ;
}e[maxm]; void add(ll u , ll v)
{
e[cnt].to = v ;
e[cnt].next = head[u];
head[u] = cnt++;
} void init()
{
memset(vis , , sizeof(vis));
memset(dfn , , sizeof(dfn));
memset(head , - , sizeof(head));
cnt = , ans = ;
}
ll qpow(ll base, ll n)
{
ll ans = ;
while(n)
{
if(n&) ans=(ans%mod)*(base%mod)%mod;
base = (base%mod) * (base%mod)%mod;
n/=;
}
return ans%mod;
} void dfs(ll id , ll step , ll fa)
{
vis[id] = , dfn[id] = step ;
for(ll i = head[id] ; i != - ; i = e[i].next)
{
ll v = e[i].to ;
//cout << i << " " << v << endl ;
if(v == fa || vis[v] == ) continue ;
if(vis[v] == )
{
sum += step - dfn[v] + ;
ans *= (qpow( , step-dfn[v]+)-+mod) % mod ;
ans %= mod ;
}
else
{
dfs(v , step+ , id);
}
}
vis[id] = ;
} int main()
{
scanf("%lld%lld" , &n , &m);
init();
for(ll i = ; i <= m ; i++)
{
ll u , v ;
scanf("%lld%lld" , &u , &v);
add(u , v);
add(v , u);
}
for(ll i = ; i <= n ; i++)
{
if(!vis[i])
dfs(i , , -);
}
ans *= qpow( , m - sum);
ans %= mod ;
printf("%lld\n" , ans); return ;
}

dfs找环的更多相关文章

  1. # 「银联初赛第一场」自学图论的码队弟弟(dfs找环+巧解n个二元一次方程)

    「银联初赛第一场」自学图论的码队弟弟(dfs找环+巧解n个二元一次方程) 题链 题意:n条边n个节点的连通图,边权为两个节点的权值之和,没有「自环」或「重边」,给出的图中有且只有一个包括奇数个结点的环 ...

  2. Codeforces Round #369 (Div. 2) D. Directed Roads —— DFS找环 + 快速幂

    题目链接:http://codeforces.com/problemset/problem/711/D D. Directed Roads time limit per test 2 seconds ...

  3. CodeForces - 103B(思维+dfs找环)

    题意 https://vjudge.net/problem/CodeForces-103B 很久很久以前的一天,一位美男子来到海边,海上狂风大作.美男子希望在海中找到美人鱼 ,但是很不幸他只找到了章鱼 ...

  4. CodeForces 711D Directed Roads (DFS找环+组合数)

    <题目链接> 题目大意: 给定一个$n$条边,$n$个点的图,每个点只有一条出边(初始状态),现在能够任意对图上的边进行翻转,问你能够使得该有向图不出先环的方案数有多少种. 解题分析: 很 ...

  5. 与图论的邂逅06:dfs找环

    当我在准备做基环树的题时,经常有了正解的思路确发现不会找环,,,,,,因为我实在太蒻了. 所以我准备梳理一下找环的方法: 有向图 先维护一个栈,把遍历到的节点一个个地入栈.当我们从一个节点x回溯时无非 ...

  6. HDU - 6370 Werewolf 2018 Multi-University Training Contest 6 (DFS找环)

    求确定身份的人的个数. 只能确定狼的身份,因为只能找到谁说了谎.但一个人是否是民,无法确定. 将人视作点,指认关系视作边,有狼边和民边两种边. 确定狼的方法只有两种: 1. 在一个仅由一条狼边组成的环 ...

  7. UVaLive 6950 && Gym 100299K Digraphs (DFS找环或者是找最长链)

    题意:有n个只包含两个字母的字符串, 要求构造一个m*m的字母矩阵, 使得矩阵的每行每列都不包含所给的字符串, m要尽量大, 如果大于20的话构造20*20的矩阵就行了. 析:开始吧,并没有读对题意, ...

  8. [NOI2008]假面舞会——数论+dfs找环

    原题戳这里 思路 分三种情况讨论: 1.有环 那显然是对于环长取个\(gcd\) 2.有类环 也就是这种情况 1→2→3→4→5→6→7,1→8→9→7 假设第一条链的长度为\(l_1\),第二条为\ ...

  9. [蓝桥杯2018初赛]小朋友崇拜圈(dfs找环)

    传送门 思路: 题意大意:n条有向边,找出最大环. 我们发现,如果一个小朋友没有被任何人崇拜,那么他一定不位于环中.为此我们可以设置一个indug数组预处理.如果2被崇拜了那么indug[2]就加加, ...

  10. New Reform---cf659E(dfs找环)

    题目链接:http://codeforces.com/problemset/problem/659/E 给你n个点,m条双向边,然后让你把这些边变成有向边,使得最后的图中入度为0的点的个数最少,求最少 ...

随机推荐

  1. Linux虚拟机网络设置问题

    使用的是VM 工作站15 和以前的不一样 没有什么虚拟机网络设置 :打开Edit->Virtual NetWork editor, 选中VMnet8,然后点击NAT Setting按钮,再点击D ...

  2. Django【第7篇】:Django之ORM跨表操作(聚合查询,分组查询,F和Q查询等)

    django之跨表查询及添加记录 一:创建表 书籍模型: 书籍有书名和出版日期,一本书可能会有多个作者,一个作者也可以写多本书,所以作者和书籍的关系就是多对多的关联关系(many-to-many); ...

  3. A1002

    多项式相加,按非零项个数,指数,系数输入两个n项多项式,合并同类项之后输出. 用数组编号保存指数,编号对应的数组值保存系数,相加之后用count记录非零项的个数,最后输出. 数组最大1000个,如果有 ...

  4. 代理修饰词weak/assign/strong的区别

    基于项目报错: WebViewJavascriptBridgeBase 中定义:@property (assign) id <WebViewJavascriptBridgeBaseDelegat ...

  5. 搭建nginx环境(参考腾讯云实验室)

    使用 yum 安装 Nginx: yum install nginx -y 修改 /etc/nginx/conf.d/default.conf,去除对 IPv6 地址的监听,可参考下面的代码示例: s ...

  6. 立神gvim

    set cursorlineset history=1700set nocompatible  "去掉讨厌的有关vi一致性模式,避免以前版本的一些bug和局限  set nufiletype ...

  7. Csharp随机生成序列码的方式Guid方法

    主要用于邮箱激活,加密等用处 Guid.NewGuid().ToString()得几种格式显示 .Guid.NewGuid().ToString("N") 结果为: 38bddf4 ...

  8. 登陆一个系统时,前端js实现的验证,记住密码等功能

    记住密码部分: <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <m ...

  9. Java解析JSON文件的方法

    http://blog.sina.com.cn/s/blog_628cc2b70101dydc.html java读取文件的方法 http://www.cnblogs.com/lovebread/ar ...

  10. 12 Django组件-form组件

    知识预览 forms组件 forms组件 校验字段功能 针对一个实例:注册用户讲解. 模型:models.py class UserInfo(models.Model): name=models.Ch ...