[SDOI2008]递归数列

题目描述

一个由自然数组成的数列按下式定义:

对于i <= k:ai = bi

对于i > k: ai = c1ai-1 + c2ai-2 + ... + ckai-k

其中bj 和 cj (1<=j<=k)是给定的自然数。写一个程序,给定自然数m <= n, 计算am + am+1 + am+2 + ... + an, 并输出它除以给定自然数p的余数的值。

输入输出格式

输入格式:

输入文件spp.in由四行组成。

第一行是一个自然数k。

第二行包含k个自然数b1, b2,...,bk。

第三行包含k个自然数c1, c2,...,ck。

第四行包含三个自然数m, n, p。


输出格式:

输出文件spp.out仅包含一行:一个正整数,表示(am + am+1 + am+2 + ... + an) mod p的值。

输入输出样例

输入样例#1:

2
1 1
1 1
2 10 1000003
输出样例#1:

142

说明

对于100%的测试数据:

1<= k <=15

1 <= m <= n <= 1018

对于20%的测试数据:

1<= k <=15

1 <= m <= n <= 106

对于30%的测试数据:

k=1 1 <= m <= n <= 1018

对于所有测试数据:

0<= b1, b2,... bk, c1, c2,..., ck<=109

1 <= p <= 108

挺水的一道题,推出了矩阵,然后前缀和搞搞也就简单了;

矩阵如下:

S[n]
b[n]
b[n-1]
...
b[n-k+1]

=

1 c[1] ... c[k-1] c[k]
0 c[1] ... c[k-1] c[k]
0 1 ... 0 0
0 0 ... 0 0
0 0 ... 1 0

*

S[n-1]
b[n-1]
b[n-2]
...
b[n-k+1]
#include<bits/stdc++.h>
#define ll long long
#define maxn 20
using namespace std; ll k,b[maxn],c[maxn],n,m,p,tot; struct mat{
ll x,y;
ll s[maxn][maxn];
}; mat operator *(mat a,mat b)
{
mat c;
c.x = a.x;
c.y = b.y;
memset(c.s,,sizeof(c.s));
for(ll i=;i<=a.x;i++)
for(ll j=;j<=b.y;j++)
for(ll k=;k<=b.x;k++)
c.s[i][j] = (c.s[i][j] + a.s[i][k] * b.s[k][j] % p) % p;
return c;
} mat ksm(mat a,ll ci)
{
mat ans;
memset(ans.s,,sizeof(ans.s));
ans.x = ans.y = a.x;
for(ll i=;i<=ans.x;i++)
ans.s[i][i] = ;
while(ci)
{
if(ci & ) ans = ans * a;
a = a * a;
ci >>= ;
}
return ans;
} ll find(ll num)
{
if(num <= k)
{
ll ans = ;
for(ll i=;i<=num;i++) ans += b[i],ans %= p;
return ans % p;
}
mat ans;
memset(ans.s,,sizeof(ans.s));
ans.x = ans.y = k + ;
for(ll i=;i<=k+;i++)
ans.s[][i] = ans.s[][i] = c[i - ];
ans.s[][] = ;
for(ll i=;i<=k;i++)
ans.s[i + ][i] = ;
ans = ksm(ans , num - k);
mat right;
memset(right.s,,sizeof(right.s));
right.x = k + ;
right.y = ;
for(ll i=;i<=k+;i++)
right.s[i][] = b[k + - i];
right.s[][] = tot;
right = ans * right;
return right.s[][];
} int main(){
cin >> k;
for(ll i=;i<=k;i++) scanf("%d",&b[i]),tot += b[i];
for(ll i=;i<=k;i++) scanf("%d",&c[i]);
cin >> m >> n >> p;
cout << (find(n) - find(m - ) + p) % p;
}

开始玩矩阵了!先来一道入门题![SDOI2008]递归数列的更多相关文章

  1. BZOJ 3231: [Sdoi2008]递归数列( 矩阵快速幂 )

    矩阵乘法裸题..差分一下然后用矩阵乘法+快速幂就可以了. ----------------------------------------------------------------------- ...

  2. BZOJ_3231_[Sdoi2008]递归数列_矩阵乘法

    BZOJ_3231_[Sdoi2008]递归数列_矩阵乘法 Description 一个由自然数组成的数列按下式定义: 对于i <= k:ai = bi 对于i > k: ai = c1a ...

  3. 可恶!学了这么久的LCA,联考的题目却是LCA+树形DP!!!可恶|!!!这几天想学学树形DP吧!先来一道入门题HDU 1520 Anniversary party

    题目描述 某大学有N个职员,编号为1~N.他们之间有从属关系,也就是说他们的关系就像一棵以校长为根的树,父结点就是子结点的直接上司.现在有个周年庆宴会,宴会每邀请来一个职员都会增加一定的快乐指数Ri, ...

  4. [bzoj3231][SDOI2008]递归数列——矩阵乘法

    题目大意: 一个由自然数组成的数列按下式定义: 对于i <= k:ai = bi 对于i > k: ai = c1ai-1 + c2ai-2 + ... + ckai-k 其中bj和 cj ...

  5. 【bzoj3231】[Sdoi2008]递归数列 矩阵乘法+快速幂

    题目描述 一个由自然数组成的数列按下式定义: 对于i <= k:ai = bi 对于i > k: ai = c1ai-1 + c2ai-2 + ... + ckai-k 其中bj和 cj  ...

  6. [luoguP2461] [SDOI2008]递归数列(DP + 矩阵优化)

    传送门 本题主要是构造矩阵,我们只需要把那一段式子看成两个前缀和相减, 然后就直接矩阵连乘. 直接对那个k+1阶矩阵快速幂即可,注意初始化矩阵为单位矩阵,即主对角线(左上到右下)都为1其他都为0. 另 ...

  7. bzoj 3231: [Sdoi2008]递归数列【矩阵乘法】

    今天真是莫名石乐志 一眼矩阵乘法,但是这个矩阵的建立还是挺有意思的,就是把sum再开一列,建成大概这样 然后记!得!开!long!long!! #include<iostream> #in ...

  8. [luogu2461 SDOI2008] 递归数列 (矩阵乘法)

    传送门 Description 一个由自然数组成的数列按下式定义: 对于i <= k:ai = bi 对于i > k: ai = c1ai-1 + c2ai-2 + ... + ckai- ...

  9. P2461 [SDOI2008]递归数列 矩阵乘法+构造

    还好$QwQ$ 思路:矩阵快速幂 提交:1次 题解: 如图: 注意$n,m$如果小于$k$就不要快速幂了,直接算就行... #include<cstdio> #include<ios ...

随机推荐

  1. 【FICO系列】SAP FICO FS00修改科目为未清项目管理

    公众号:SAP Technical 本文作者:matinal 原文出处:http://www.cnblogs.com/SAPmatinal/ 原文链接:[FICO系列]SAP FICO FS00修改科 ...

  2. 数据结构系列之2-3树的插入、查找、删除和遍历完整版代码实现(dart语言实现)

    弄懂了二叉树以后,再来看2-3树.网上.书上看了一堆文章和讲解,大部分是概念,很少有代码实现,尤其是删除操作的代码实现.当然,因为2-3树的特性,插入和删除都是比较复杂的,因此经过思考,独创了删除时分 ...

  3. python可视化:matplotlib系列

    matplotlib 的官方文档: https://matplotlib.org/users/index.html 1 子图布局管理 布局参数 紧密布局的方法 坐标轴的公用和隐藏 2 直方图bar和b ...

  4. CentOS7创建本地源过程

    1)使用yum安装http服务(主节点) yum -y install httpd 2)将httpd服务加入系统自启动服务并设置开机启动 systemctl start httpd #启动apache ...

  5. docker配置文件不生效

    1.查看docker配置文件位置 systemctl status docker.service 2.修改docker配置文件 vim /lib/systemd/system/docker.servi ...

  6. Java Springboot 根据图片链接生成图片下载链接 及 多个图片打包zip下载链接

    现有一些图片在服务器上的链接,在浏览器中打开这些链接是直接显示在浏览器页面的形式. 现在需要生成这些图片的单独下载以及打包下载链接,即在浏览器中打开下载链接后弹出下载框提示下载.由于前端存在跨域问题, ...

  7. SCUT - 216 - 宝华科技树

    https://scut.online/p/216 演员 把这个当成dp算了半天,各种姿势,好吧,就当练习一下树dp. 假如是每个节点的层数之和,按照dp[i][j]为从i点出发获得j科技的最小费用d ...

  8. Gradle Settings 类的学习

    # 任务 了解 Settings 类作用于 Gradle 构建的哪个阶段? 了解 Settings 类与 settings.gradle 的关系 了解和使用 inlcude 方法 hook 初始化阶段 ...

  9. java调用webservice接口 几种方法

    webservice的 发布一般都是使用WSDL(web service descriptive language)文件的样式来发布的,在WSDL文件里面,包含这个webservice暴露在外面可供使 ...

  10. Django之AJAX请求

    ---恢复内容开始--- 一.choices字段  1.实列  前端代码 <div class='container'> <div class="row"> ...