开始玩矩阵了!先来一道入门题![SDOI2008]递归数列
[SDOI2008]递归数列
题目描述
一个由自然数组成的数列按下式定义:
对于i <= k:ai = bi
对于i > k: ai = c1ai-1 + c2ai-2 + ... + ckai-k
其中bj 和 cj (1<=j<=k)是给定的自然数。写一个程序,给定自然数m <= n, 计算am + am+1 + am+2 + ... + an, 并输出它除以给定自然数p的余数的值。
输入输出格式
输入格式:
输入文件spp.in由四行组成。
第一行是一个自然数k。
第二行包含k个自然数b1, b2,...,bk。
第三行包含k个自然数c1, c2,...,ck。
第四行包含三个自然数m, n, p。
输出格式:
输出文件spp.out仅包含一行:一个正整数,表示(am + am+1 + am+2 + ... + an) mod p的值。
输入输出样例
2
1 1
1 1
2 10 1000003
142
说明
对于100%的测试数据:
1<= k <=15
1 <= m <= n <= 1018
对于20%的测试数据:
1<= k <=15
1 <= m <= n <= 106
对于30%的测试数据:
k=1 1 <= m <= n <= 1018
对于所有测试数据:
0<= b1, b2,... bk, c1, c2,..., ck<=109
1 <= p <= 108
挺水的一道题,推出了矩阵,然后前缀和搞搞也就简单了;
矩阵如下:
S[n] |
b[n] |
b[n-1] |
... |
b[n-k+1] |
=
1 | c[1] | ... | c[k-1] | c[k] |
0 | c[1] | ... | c[k-1] | c[k] |
0 | 1 | ... | 0 | 0 |
0 | 0 | ... | 0 | 0 |
0 | 0 | ... | 1 | 0 |
*
S[n-1] |
b[n-1] |
b[n-2] |
... |
b[n-k+1] |
#include<bits/stdc++.h>
#define ll long long
#define maxn 20
using namespace std; ll k,b[maxn],c[maxn],n,m,p,tot; struct mat{
ll x,y;
ll s[maxn][maxn];
}; mat operator *(mat a,mat b)
{
mat c;
c.x = a.x;
c.y = b.y;
memset(c.s,,sizeof(c.s));
for(ll i=;i<=a.x;i++)
for(ll j=;j<=b.y;j++)
for(ll k=;k<=b.x;k++)
c.s[i][j] = (c.s[i][j] + a.s[i][k] * b.s[k][j] % p) % p;
return c;
} mat ksm(mat a,ll ci)
{
mat ans;
memset(ans.s,,sizeof(ans.s));
ans.x = ans.y = a.x;
for(ll i=;i<=ans.x;i++)
ans.s[i][i] = ;
while(ci)
{
if(ci & ) ans = ans * a;
a = a * a;
ci >>= ;
}
return ans;
} ll find(ll num)
{
if(num <= k)
{
ll ans = ;
for(ll i=;i<=num;i++) ans += b[i],ans %= p;
return ans % p;
}
mat ans;
memset(ans.s,,sizeof(ans.s));
ans.x = ans.y = k + ;
for(ll i=;i<=k+;i++)
ans.s[][i] = ans.s[][i] = c[i - ];
ans.s[][] = ;
for(ll i=;i<=k;i++)
ans.s[i + ][i] = ;
ans = ksm(ans , num - k);
mat right;
memset(right.s,,sizeof(right.s));
right.x = k + ;
right.y = ;
for(ll i=;i<=k+;i++)
right.s[i][] = b[k + - i];
right.s[][] = tot;
right = ans * right;
return right.s[][];
} int main(){
cin >> k;
for(ll i=;i<=k;i++) scanf("%d",&b[i]),tot += b[i];
for(ll i=;i<=k;i++) scanf("%d",&c[i]);
cin >> m >> n >> p;
cout << (find(n) - find(m - ) + p) % p;
}
开始玩矩阵了!先来一道入门题![SDOI2008]递归数列的更多相关文章
- BZOJ 3231: [Sdoi2008]递归数列( 矩阵快速幂 )
矩阵乘法裸题..差分一下然后用矩阵乘法+快速幂就可以了. ----------------------------------------------------------------------- ...
- BZOJ_3231_[Sdoi2008]递归数列_矩阵乘法
BZOJ_3231_[Sdoi2008]递归数列_矩阵乘法 Description 一个由自然数组成的数列按下式定义: 对于i <= k:ai = bi 对于i > k: ai = c1a ...
- 可恶!学了这么久的LCA,联考的题目却是LCA+树形DP!!!可恶|!!!这几天想学学树形DP吧!先来一道入门题HDU 1520 Anniversary party
题目描述 某大学有N个职员,编号为1~N.他们之间有从属关系,也就是说他们的关系就像一棵以校长为根的树,父结点就是子结点的直接上司.现在有个周年庆宴会,宴会每邀请来一个职员都会增加一定的快乐指数Ri, ...
- [bzoj3231][SDOI2008]递归数列——矩阵乘法
题目大意: 一个由自然数组成的数列按下式定义: 对于i <= k:ai = bi 对于i > k: ai = c1ai-1 + c2ai-2 + ... + ckai-k 其中bj和 cj ...
- 【bzoj3231】[Sdoi2008]递归数列 矩阵乘法+快速幂
题目描述 一个由自然数组成的数列按下式定义: 对于i <= k:ai = bi 对于i > k: ai = c1ai-1 + c2ai-2 + ... + ckai-k 其中bj和 cj ...
- [luoguP2461] [SDOI2008]递归数列(DP + 矩阵优化)
传送门 本题主要是构造矩阵,我们只需要把那一段式子看成两个前缀和相减, 然后就直接矩阵连乘. 直接对那个k+1阶矩阵快速幂即可,注意初始化矩阵为单位矩阵,即主对角线(左上到右下)都为1其他都为0. 另 ...
- bzoj 3231: [Sdoi2008]递归数列【矩阵乘法】
今天真是莫名石乐志 一眼矩阵乘法,但是这个矩阵的建立还是挺有意思的,就是把sum再开一列,建成大概这样 然后记!得!开!long!long!! #include<iostream> #in ...
- [luogu2461 SDOI2008] 递归数列 (矩阵乘法)
传送门 Description 一个由自然数组成的数列按下式定义: 对于i <= k:ai = bi 对于i > k: ai = c1ai-1 + c2ai-2 + ... + ckai- ...
- P2461 [SDOI2008]递归数列 矩阵乘法+构造
还好$QwQ$ 思路:矩阵快速幂 提交:1次 题解: 如图: 注意$n,m$如果小于$k$就不要快速幂了,直接算就行... #include<cstdio> #include<ios ...
随机推荐
- 【FIORI系列】SAP OpenUI5 (SAPUI5) js框架简单介绍
公众号:SAP Technical 本文作者:matinal 原文出处:http://www.cnblogs.com/SAPmatinal/ 原文链接:[FIORI系列]SAP OpenUI5 (SA ...
- Struts2框架学习笔记1
1,框架概述 1.1,什么是框架(了解) 将一些重复性的代码进行封装,简化程序员的编程操作,可以使得程序员在编码中把更多的精力放到业务需求的分析和理解上面,相当于一个半成品软件. 1.2,三大框架(掌 ...
- 【BZOJ2622】[2012国家集训队测试]深入虎穴
虎是中国传统文化中一个独特的意象.我们既会把老虎的形象用到喜庆的节日装饰画上,也可能把它视作一种邪恶的可怕的动物,例如“武松打虎”或者“三人成虎”.“不入虎穴焉得虎子”是一个对虎的威猛的形象的极好体现 ...
- 断开ssh链接在后台继续运行命令
转载:http://blog.csdn.net/v1v1wang/article/details/6855552 对于linux运维,我们都是使用ssh登录到服务器,如果我们运行的任务需要很长时间或不 ...
- /cat/cpuinfo信息查看
# 总核数 = 物理CPU个数 X 每颗物理CPU的核数 # 总逻辑CPU数 = 物理CPU个数 X 每颗物理CPU的核数 X 超线程数 # 查看物理CPU个数cat /proc/cpuinfo| g ...
- Delphi7所使用的WinAPI大全(摘自VCL源码,一共1200个函数)
经过我整理的,去掉了A和W的重复.虽然没写注释,但以后要一个一个研究.有这些WINAPI就够用了. kernel32 = 'kernel32.dll'; gdi32 = 'gdi32.dll'; us ...
- CSP2019
$CSP\space S$ 格雷码 $solution:$ 直接模拟即可. 时间复杂度 $O(n)$ . #include<iostream> #include<cstring> ...
- AXI总线协议
AXI总线协议 (一).概述 AXI (高性能扩展总线接口,Advanced eXtensible Interface)是ARM AMBA 单片机总线系列中的一个协议,是计划用于高性能.高主频的系统设 ...
- Xdex(百度版)脱壳工具基本原理
[原创]Xdex(百度版)脱壳工具基本原理作 者: sherrydl时 间: 2015-12-13,10:52:45链 接: http://bbs.pediy.com/showthread.php?t ...
- vscode调试php
xdebug调试vscode 下载xdebug.dll扩展库 php.ini配置 [XDebug] xdebug.remote_enable = xdebug.remote_autostart = z ...