题目传送门

https://lydsy.com/JudgeOnline/problem.php?id=4810

题解

看数据范围和题目名字应该是根号算法。

因为询问除了区间外,还有第 \(3\) 个参数,所以不太可能是分块。

所以考虑莫队离线维护。

根据经验,差为某值的数对的存在性可以用 bitset 移位判断。用 bitset 维护当前区间内每一个数是否出现,那么减法就可以转化为 \(s \& (s << x))\) 是否为空判断。

加法的话可以把 bitset 翻转以后类似减法判断。

乘法的话,因为乘积 \(\leq c\),所以可以 \(\sqrt c\) 枚举每一个因数判断。


总的时间复杂度为 \(O(m(\sqrt n + \frac c{64}))\)。

#include<bits/stdc++.h>

#define fec(i, x, y) (int i = head[x], y = g[i].to; i; i = g[i].ne, y = g[i].to)
#define dbg(...) fprintf(stderr, __VA_ARGS__)
#define File(x) freopen(#x".in", "r", stdin), freopen(#x".out", "w", stdout)
#define fi first
#define se second
#define pb push_back template<typename A, typename B> inline char smax(A &a, const B &b) {return a < b ? a = b, 1 : 0;}
template<typename A, typename B> inline char smin(A &a, const B &b) {return b < a ? a = b, 1 : 0;} typedef long long ll; typedef unsigned long long ull; typedef std::pair<int, int> pii; template<typename I> inline void read(I &x) {
int f = 0, c;
while (!isdigit(c = getchar())) c == '-' ? f = 1 : 0;
x = c & 15;
while (isdigit(c = getchar())) x = (x << 1) + (x << 3) + (c & 15);
f ? x = -x : 0;
} const int N = 100000 + 7;
const int M = 100000; #define bl(x) (((x) - 1) / blo + 1) int n, m, blo;
int a[N], ans[N], cnt[N];
std::bitset<N> s, t; struct Query {
int opt, l, r, x, *ans;
inline bool operator < (const Query &b) const { return bl(l) != bl(b.l) ? l < b.l : r < b.r; }
} q[N]; inline void madd(int x) {
++cnt[a[x]];
if (cnt[a[x]] == 1) s.set(a[x]), t.set(M - a[x]);
}
inline void mdel(int x) {
--cnt[a[x]];
if (!cnt[a[x]]) s.reset(a[x]), t.reset(M - a[x]);
} inline void work() {
std::sort(q + 1, q + m + 1);
int l = 1, r = 0;
for (int i = 1; i <= m; ++i) {
while (l > q[i].l) madd(--l);
while (r < q[i].r) madd(++r);
while (l < q[i].l) mdel(l++);
while (r > q[i].r) mdel(r--);
if (q[i].opt == 1) *q[i].ans = (s & (s << q[i].x)).any();
else if (q[i].opt == 2) *q[i].ans = (t & (s << (M - q[i].x))).any();
else {
int x = q[i].x;
for (int j = 1, p = sqrt(x); j <= p; ++j)
if (x % j == 0 && s[j] && s[x / j]) { *q[i].ans = 1; break; }
}
}
for (int i = 1; i <= m; ++i) if (ans[i]) puts("yuno"); else puts("yumi");
} inline void init() {
read(n), read(m), blo = sqrt(n);
for (int i = 1; i <= n; ++i) read(a[i]);
for (int i = 1; i <= m; ++i) read(q[i].opt), read(q[i].l), read(q[i].r), read(q[i].x), q[i].ans = ans + i;
} int main() {
#ifdef hzhkk
freopen("hkk.in", "r", stdin);
#endif
init();
work();
fclose(stdin), fclose(stdout);
return 0;
}

bzoj4810 [Ynoi2017]由乃的玉米田 莫队+bitset(+数论)的更多相关文章

  1. BZOJ4810:[YNOI2017]由乃的玉米田(莫队,bitset)

    Description 由乃在自己的农田边散步,她突然发现田里的一排玉米非常的不美.这排玉米一共有N株,它们的高度参差不齐. 由乃认为玉米田不美,所以她决定出个数据结构题   这个题是这样的: 给你一 ...

  2. 【bzoj4810】[Ynoi2017]由乃的玉米田 莫队算法+STL-bitset

    题目描述 由乃在自己的农田边散步,她突然发现田里的一排玉米非常的不美.这排玉米一共有N株,它们的高度参差不齐. 由乃认为玉米田不美,所以她决定出个数据结构题 这个题是这样的: 给你一个序列a,长度为n ...

  3. bzoj4810 [Ynoi2017]由乃的玉米田 bitset优化+暴力+莫队

    [Ynoi2017]由乃的玉米田 Time Limit: 30 Sec  Memory Limit: 256 MBSubmit: 917  Solved: 447[Submit][Status][Di ...

  4. LuoguP3674 小清新人渣的本愿 && BZOJ4810: [Ynoi2017]由乃的玉米田

    题目地址 小清新人渣的本愿 [Ynoi2017]由乃的玉米田 所以这两题也就输出不一样而已 题解 这种lxl的题还是没修改操作的题基本就是莫队 分开考虑每个询问 1.减法 \(a-b=x⇒a=b+x\ ...

  5. BZOJ4810 Ynoi2017由乃的玉米田(莫队+bitset)

    多组询问不强制在线,那么考虑莫队.bitset维护当前区间出现了哪些数,数组记录每个数的出现次数以维护bitset.对于乘法,显然应有一个根号范围内的因子,暴力枚举即可.对于减法,a[i]-a[j]= ...

  6. bzoj4810 [Ynoi2017]由乃的玉米田

    Description 由乃在自己的农田边散步,她突然发现田里的一排玉米非常的不美.这排玉米一共有N株,它们的高度参差不齐. 由乃认为玉米田不美,所以她决定出个数据结构题   这个题是这样的: 给你一 ...

  7. 【BZOJ4810】[Ynoi2017]由乃的玉米田 bitset+莫队

    [BZOJ4810][Ynoi2017]由乃的玉米田 Description 由乃在自己的农田边散步,她突然发现田里的一排玉米非常的不美.这排玉米一共有N株,它们的高度参差不齐.由乃认为玉米田不美,所 ...

  8. [BZOJ]4810: [Ynoi2017]由乃的玉米田

    Time Limit: 30 Sec  Memory Limit: 256 MB Description 由乃在自己的农田边散步,她突然发现田里的一排玉米非常的不美.这排玉米一共有N株,它们的高度参差 ...

  9. P3674 小清新人渣的本愿 莫队+bitset

    ennmm...bitset能过系列. 莫队+bitset \(\mathcal{O}(m\sqrt n + \frac{nm}{w})\) 维护一个正向的 bitset <N> mem ...

随机推荐

  1. 杂项-桌面应用程序:Windows Live Writer(WLW)

    ylbtech-杂项-桌面应用程序:Windows Live Writer(WLW) Windowslive Writer 即(WLW) 是一个免费的桌面应用程序,您可以使用它轻松发布丰富的内容到您的 ...

  2. leetcode 27. 移除元素(python)

    1. 题目描述 给定一个数组 nums 和一个值 val,你需要原地移除所有数值等于 val 的元素,返回移除后数组的新长度. 不要使用额外的数组空间,你必须在原地修改输入数组并在使用 O(1) 额外 ...

  3. Spring mvc注解说明

    编号 注解 说明 位置 备注 1 @Controller 将类变成Spring Bean 类 现阶段 @Controller . @Service 以及 @Repository 和 @Componen ...

  4. Octavia 创建 loadbalancer 的实现与分析

    目录 文章目录 目录 从 Octavia API 看起 Octavia Controller Worker database_tasks.MapLoadbalancerToAmphora comput ...

  5. pyinstaller-python->exe

    pip install pyinstaller. pyinstaller -F /home/base64_decode.py https://www.imooc.com/article/26772 h ...

  6. sql语句exists 用法

    参考:SQL语句exists用法,Sql语句中IN和exists的区别及应用 现在有三张表 学生表S: sno ,sname 课程表C:cno ,cname 学生选课表SC: sno ,cno 查询选 ...

  7. wsl 下安装docker

    docker for windows本身其实是可以直接用的,但是仍然有很多不足,比如说:权限问题.没有docker.sock文件.文件编码问题等.而win10自带的wsl可以非常完美地解决这些问题. ...

  8. vim加脚本注释和文本加密

    vim /etc/vimrc 一.李导版本 autocmd BufNewFile *.py,*.cc,*.sh,*.java exec ":call SetTitle()" fun ...

  9. k8s/01开启云原生之门(Mooc)

    一.kubernetes(k8s)基础知识 1.简介 在2017年Kubernetes战胜了两个强大的竞争对手Swarm和Mesos,成为容器管理与调度编排领域的首选平台和事实标准. 2014年k8s ...

  10. Docker 容器(container)及资源限制

    Container: 既然container是由image运行起来的,那么是否可以理解为container和image有某种关系?先来看张图: 其实可以理解为container只是基于image之后的 ...