BSOJ5467 [CSPX2017#3]整数 莫比乌斯反演+杜教筛
题意简述
给你两个整数\(n\),\(k\),让你求出这个式子
\]
做法
对于\(\gcd\)进行莫比乌斯反演
\]
设\(S(n)= \sum_{a_1=1}^n \sum_{a_2=a_1}^n \sum_{a_3=a_2}^n \cdots \sum_{a_k=a_{k-1}}^n 1\),可以发现
\]
所以可得
\]
杜教筛预处理\(\mu\),整除分块计算\(S\left(\frac{n}{p} \right)\)即可。
代码实现
#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define re register int
#define db double
#define in inline
#define rd regitser double
#define ak *
const int N=1e7+5,p=1e9+7,K=1e3+5;
char qwq;
int pri[N>>3];
ll mu[N],inv[N],fac[N],fav[N];
bool vis[N];
unordered_map<ll,ll>smu;
inline int read()
{
re cz=0,ioi=1;qwq=getchar();
while(!isdigit(qwq)) ioi=qwq=='-'?~ioi+1:1,qwq=getchar();
while(isdigit(qwq)) cz=(cz<<3)+(cz<<1)+(qwq^48),qwq=getchar();
return cz ak ioi;
}
in void get()
{
mu[1]=1;
for(re i=2;i<=1e7;i++)
{
if(!vis[i]) pri[++pri[0]]=i,mu[i]=p-1;
for(re j=1;j<=pri[0]&&i*pri[j]<=1e7;j++)
{
vis[i*pri[j]]=1;
if(i%pri[j]==0) {mu[i*pri[j]]=0;break;}
else mu[i*pri[j]]=p-mu[i];
}
}
for(re i=2;i<=1e7;i++) mu[i]=(mu[i]+mu[i-1])%p;
}
in ll qpow(ll x,ll y,ll z=1)
{
for(;y;y>>=1,x=x*x%p) if(y&1) z=z*x%p;
return z;
}
in ll c(ll n,ll m)
{
if(n<=1e7) return fac[n]*inv[n-m]%p*inv[m]%p;
ll ans=1ll;
for(ll i=0;i<m;i++) ans=ans*(n-i)%p;
return ans*inv[m]%p;
}
in ll get_mu(ll n)
{
if(n<=1e7) return mu[n];
if(smu[n]) return smu[n];
ll res=1;
for(ll l=2,r;l<=n;l=r+1)
r=n/(n/l),res=(res-(r-l+1)*get_mu(n/l)%p+p)%p;
return smu[n]=res;
}
int main()
{
get();inv[0]=inv[1]=fav[0]=fac[0]=fac[1]=1;
for(re i=2;i<=1e7;i++) inv[i]=(ll)(p-p/i)*inv[p%i]%p,fac[i]=fac[i-1]*i%p;
for(re i=1;i<=1e7;i++) inv[i]=inv[i-1]*inv[i]%p;
re opt=read();
while(opt--)
{
ll n=read(),k=read();
ll ans=0;
for(ll l=1,r;l<=n;l=r+1)
{
r=n/(n/l);
ans=(ans+(ll)(get_mu(r)-get_mu(l-1)+p)%p*c(n/l+k-1,k)%p)%p;
}
cout<<ans<<endl;
}
return 0;
}
BSOJ5467 [CSPX2017#3]整数 莫比乌斯反演+杜教筛的更多相关文章
- 【bzoj3930】[CQOI2015]选数 莫比乌斯反演+杜教筛
题目描述 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都求一次最大公约数,以便进一 ...
- [BZOJ 3930] [CQOI 2015]选数(莫比乌斯反演+杜教筛)
[BZOJ 3930] [CQOI 2015]选数(莫比乌斯反演+杜教筛) 题面 我们知道,从区间\([L,R]\)(L和R为整数)中选取N个整数,总共有\((R-L+1)^N\)种方案.求最大公约数 ...
- [复习]莫比乌斯反演,杜教筛,min_25筛
[复习]莫比乌斯反演,杜教筛,min_25筛 莫比乌斯反演 做题的时候的常用形式: \[\begin{aligned}g(n)&=\sum_{n|d}f(d)\\f(n)&=\sum_ ...
- 【bzoj4176】Lucas的数论 莫比乌斯反演+杜教筛
Description 去年的Lucas非常喜欢数论题,但是一年以后的Lucas却不那么喜欢了. 在整理以前的试题时,发现了这样一道题目"求Sigma(f(i)),其中1<=i< ...
- 【CCPC-Wannafly Winter Camp Day3 (Div1) F】小清新数论(莫比乌斯反演+杜教筛)
点此看题面 大致题意: 让你求出\(\sum_{i=1}^n\sum_{j=1}^n\mu(gcd(i,j))\). 莫比乌斯反演 这种题目,一看就是莫比乌斯反演啊!(连莫比乌斯函数都有) 关于莫比乌 ...
- 51nod 1237 最大公约数之和 V3【欧拉函数||莫比乌斯反演+杜教筛】
用mu写lcm那道卡常卡成狗(然而最后也没卡过去,于是写一下gcd冷静一下 首先推一下式子 \[ \sum_{i=1}^{n}\sum_{j=1}^{n}gcd(i,j) \] \[ \sum_{i= ...
- [HDU 5608]Function(莫比乌斯反演 + 杜教筛)
题目描述 有N2−3N+2=∑d∣Nf(d)N^2-3N+2=\sum_{d|N} f(d)N2−3N+2=∑d∣Nf(d) 求∑i=1Nf(i)\sum_{i=1}^{N} f(i)∑i=1Nf ...
- 洛谷P3768 简单的数学题 莫比乌斯反演+杜教筛
题意简述 求出这个式子 \[ \sum_{i=1}^n\sum_{j=1}^n ij(i,j) \bmod p \] 做法 先用莫比乌斯反演拆一下式子 \[ \begin{split} \sum_{i ...
- HDU 5608 function(莫比乌斯反演 + 杜教筛)题解
题意: 已知\(N^2-3N+2=\sum_{d|N}f(d)\),求\(\sum_{i=1}^nf(i) \mod 1e9+7\),\(n\leq1e9\) 思路: 杜教筛基础题? 很显然这里已经设 ...
随机推荐
- C++ STL 关于双向链表list的splice函数
转载自https://blog.csdn.net/qjh5606/article/details/85881680 list::splice实现list拼接的功能.将源list的内容部分或全部元素删除 ...
- C# 自定义集合类
.NET中提供了一种称为集合的类型,类似于数组,将一组类型化对象组合在一起,可通过遍历获取其中的每一个元素 本篇记录一个自定义集合的小实例.自定义集合需要通过实现System.Collections命 ...
- nginx实现域名跳转
server { listen 80; server_name www.dd.com www.tt.com; index index.html index.htm index.php; root /u ...
- WebMvcConfigurerAdapter详解和过时后的替代方案
一.什么是WebMvcConfigurerAdapter Spring内部的一种配置方式采用JavaBean的形式来代替传统的xml配置文件形式进行针对框架个性化定制 二.WebMvcConfigur ...
- 修改jupyter notebook默认路径,亲测
anaconda环境 任务栏中找到anaconda/jupyter notebook,鼠标右键属性 点击确认即可.
- 5.使用github脚本LAZY----几个最好的发行版----自定义终端----基本命令
使用现成的脚本 LAZY * 如果您不想手动设置,可以用这个脚本帮您设置 访问:github.com/arismelachroinos/lscript sudo apt-get git git clo ...
- finereport连接mysql8.0的解决办法
1.具体连接操作 首先将mysql-connector-java-8.0以上的jar包放到FindReport安装目录下的webapps下的WEB-INF下的lib下. 打开finereport,找到 ...
- 使用原生js 获取用户访问项目的浏览器类型
想要获取浏览器的类型很简单,网上提供了很多方法,但是看过之后,都是根据浏览器内核来判断是ie,谷歌,火狐,opeara的, 所以不能进一步判断在国内使用的主流浏览器类型,比如360,百度,搜狐浏览器等 ...
- python学习之路 目录
python Python基础-1 python由来 字符编码 注释 pyc文件 python变量 导入模块 获取用户输入 流程控制if while python基础-2 编码转换 pycharm 配 ...
- [Git] 019 merge 命令的补充
回顾:[Git] 017 加一条分支,享双倍快乐 的 "2.3" 1. "Fast-forward" "Git" 在合并分支时会尽可能地使用 ...