题意简述

给你两个整数\(n\),\(k\),让你求出这个式子

\[\sum_{a_1=1}^n \sum_{a_2=a_1}^n \sum_{a_3=a_2}^n \cdots \sum_{a_k=a_{k-1}}^n \left[ \gcd {(a_1,a_2,a_3\cdots,a_k)} = 1\right]
\]

做法

对于\(\gcd\)进行莫比乌斯反演

\[Ans = \sum_p \mu(p) \sum_{a_1=1}^n \sum_{a_2=a_1}^{\frac{n}{p}} \sum_{a_3=a_2}^{\frac{n}{p}} \cdots \sum_{a_k=a_{k-1}}^{\frac{n}{p}} 1
\]

设\(S(n)= \sum_{a_1=1}^n \sum_{a_2=a_1}^n \sum_{a_3=a_2}^n \cdots \sum_{a_k=a_{k-1}}^n 1\),可以发现

\[S(n)=\sum [1\leq a_1 \leq a_2 \leq \cdots \leq a_k\leq n]=\binom {n+k-1}{k}
\]

所以可得

\[Ans=\sum_p \mu (p) S\left(\frac{n}{p}\right) = \sum_p \mu (p) \binom {\frac{n}{p}+k-1}{k}
\]

杜教筛预处理\(\mu\),整除分块计算\(S\left(\frac{n}{p} \right)\)即可。

代码实现

#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define re register int
#define db double
#define in inline
#define rd regitser double
#define ak *
const int N=1e7+5,p=1e9+7,K=1e3+5;
char qwq;
int pri[N>>3];
ll mu[N],inv[N],fac[N],fav[N];
bool vis[N];
unordered_map<ll,ll>smu;
inline int read()
{
re cz=0,ioi=1;qwq=getchar();
while(!isdigit(qwq)) ioi=qwq=='-'?~ioi+1:1,qwq=getchar();
while(isdigit(qwq)) cz=(cz<<3)+(cz<<1)+(qwq^48),qwq=getchar();
return cz ak ioi;
}
in void get()
{
mu[1]=1;
for(re i=2;i<=1e7;i++)
{
if(!vis[i]) pri[++pri[0]]=i,mu[i]=p-1;
for(re j=1;j<=pri[0]&&i*pri[j]<=1e7;j++)
{
vis[i*pri[j]]=1;
if(i%pri[j]==0) {mu[i*pri[j]]=0;break;}
else mu[i*pri[j]]=p-mu[i];
}
}
for(re i=2;i<=1e7;i++) mu[i]=(mu[i]+mu[i-1])%p;
}
in ll qpow(ll x,ll y,ll z=1)
{
for(;y;y>>=1,x=x*x%p) if(y&1) z=z*x%p;
return z;
}
in ll c(ll n,ll m)
{
if(n<=1e7) return fac[n]*inv[n-m]%p*inv[m]%p;
ll ans=1ll;
for(ll i=0;i<m;i++) ans=ans*(n-i)%p;
return ans*inv[m]%p;
}
in ll get_mu(ll n)
{
if(n<=1e7) return mu[n];
if(smu[n]) return smu[n];
ll res=1;
for(ll l=2,r;l<=n;l=r+1)
r=n/(n/l),res=(res-(r-l+1)*get_mu(n/l)%p+p)%p;
return smu[n]=res;
}
int main()
{
get();inv[0]=inv[1]=fav[0]=fac[0]=fac[1]=1;
for(re i=2;i<=1e7;i++) inv[i]=(ll)(p-p/i)*inv[p%i]%p,fac[i]=fac[i-1]*i%p;
for(re i=1;i<=1e7;i++) inv[i]=inv[i-1]*inv[i]%p;
re opt=read();
while(opt--)
{
ll n=read(),k=read();
ll ans=0;
for(ll l=1,r;l<=n;l=r+1)
{
r=n/(n/l);
ans=(ans+(ll)(get_mu(r)-get_mu(l-1)+p)%p*c(n/l+k-1,k)%p)%p;
}
cout<<ans<<endl;
}
return 0;
}

BSOJ5467 [CSPX2017#3]整数 莫比乌斯反演+杜教筛的更多相关文章

  1. 【bzoj3930】[CQOI2015]选数 莫比乌斯反演+杜教筛

    题目描述 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都求一次最大公约数,以便进一 ...

  2. [BZOJ 3930] [CQOI 2015]选数(莫比乌斯反演+杜教筛)

    [BZOJ 3930] [CQOI 2015]选数(莫比乌斯反演+杜教筛) 题面 我们知道,从区间\([L,R]\)(L和R为整数)中选取N个整数,总共有\((R-L+1)^N\)种方案.求最大公约数 ...

  3. [复习]莫比乌斯反演,杜教筛,min_25筛

    [复习]莫比乌斯反演,杜教筛,min_25筛 莫比乌斯反演 做题的时候的常用形式: \[\begin{aligned}g(n)&=\sum_{n|d}f(d)\\f(n)&=\sum_ ...

  4. 【bzoj4176】Lucas的数论 莫比乌斯反演+杜教筛

    Description 去年的Lucas非常喜欢数论题,但是一年以后的Lucas却不那么喜欢了. 在整理以前的试题时,发现了这样一道题目"求Sigma(f(i)),其中1<=i< ...

  5. 【CCPC-Wannafly Winter Camp Day3 (Div1) F】小清新数论(莫比乌斯反演+杜教筛)

    点此看题面 大致题意: 让你求出\(\sum_{i=1}^n\sum_{j=1}^n\mu(gcd(i,j))\). 莫比乌斯反演 这种题目,一看就是莫比乌斯反演啊!(连莫比乌斯函数都有) 关于莫比乌 ...

  6. 51nod 1237 最大公约数之和 V3【欧拉函数||莫比乌斯反演+杜教筛】

    用mu写lcm那道卡常卡成狗(然而最后也没卡过去,于是写一下gcd冷静一下 首先推一下式子 \[ \sum_{i=1}^{n}\sum_{j=1}^{n}gcd(i,j) \] \[ \sum_{i= ...

  7. [HDU 5608]Function(莫比乌斯反演 + 杜教筛)

    题目描述 有N2−3N+2=∑d∣Nf(d)N^2-3N+2=\sum_{d|N} f(d)N2−3N+2=∑d∣N​f(d) 求∑i=1Nf(i)\sum_{i=1}^{N} f(i)∑i=1N​f ...

  8. 洛谷P3768 简单的数学题 莫比乌斯反演+杜教筛

    题意简述 求出这个式子 \[ \sum_{i=1}^n\sum_{j=1}^n ij(i,j) \bmod p \] 做法 先用莫比乌斯反演拆一下式子 \[ \begin{split} \sum_{i ...

  9. HDU 5608 function(莫比乌斯反演 + 杜教筛)题解

    题意: 已知\(N^2-3N+2=\sum_{d|N}f(d)\),求\(\sum_{i=1}^nf(i) \mod 1e9+7\),\(n\leq1e9\) 思路: 杜教筛基础题? 很显然这里已经设 ...

随机推荐

  1. MAVEN打包时跳过Junit测试

    我们知道,通常情况下使用maven package命令打包时,会自动执行test包下的各个单元测试. 这是因为spring-boot-maven-plugin插件已经集成了maven-surefire ...

  2. python基础:multiprocessing的使用

    不同于C++或Java的多线程,python中是使用多进程来解决多项任务并发以提高效率的问题,依靠的是充分使用多核CPU的资源.这里是介绍mulitiprocessing的官方文档:https://d ...

  3. SPA应用性能优化(懒加载)

    前提: 如今开发方式都是采用前后台分离的方式,前台采用的方式则是单页面应用开发简称SPA,这种开发模式最大的一个特点就是将有所代码打包成了一个文件, 这会导致了一个问题就是如果这个应用过大,打出来的这 ...

  4. 浅谈 JVM 结构体系、类加载、JDK JRE JVM 三者的关系

    一.java类,创建.编译.到运行的工程: 1.随便建一个Java类,保存后就是一个.java文件, 2.然后我们使用 javac命令编译 .java文件,生产 .class文件. 3.再然后使用 j ...

  5. tensorflow2.0 numpy.ndarray 与tenor直接互转

    1.代码参考 import numpy as npimport tensorflow as tf a = np.random.random((5,3)) b = np.random.randint(0 ...

  6. 简述在Vue脚手架中,组件以及父子组件(非父子组件)之间的传值

    1.组件的定义 组成: template:包裹HTML模板片段(反映了数据与最终呈现给用户视图之间的映射关系) 只支持单个template标签: 支持lang配置多种模板语法: script:配置Vu ...

  7. sqlplus无法登陆?

    关键词:error 6 initialize sqlplus,ORA-27101: shared memory realm does not exist 1.error 6 initialize sq ...

  8. Nginx 2.安装与部署配置

    转 https://www.cnblogs.com/wcwnina/p/8728430.html > 下载 官方网站:https://nginx.org/en/download.html Win ...

  9. 3.golang 的注释

    package main import ( "fmt" "math" ) func main() { fmt.Println(pi(5000)) } // pi ...

  10. webpack4+vue打包简单入门

    前言 最近在研究使用webpack的使用,在查阅了数篇文章后,学习了webpack的基础打包流程. 本来就可以一删了之了,但是觉得未免有点可惜,所以就有了这篇文章,供大家参考. webpack打包的教 ...