思路还是按照紫书,枚举a,得出b, 然后验证。

代码参考了LRJ的。

 #include <cstdio>
#include <iostream>
using namespace std; const int maxn=*+;
const int M=;
int x[maxn], T; void solve()
{
for(int a=; a<M; a++)
for(int b=; b<M; b++)
{
bool ok=true;
for(int i=; i<=*T; i+=)
{
x[i] = (a*x[i-]+b) %M;
if(i+<=*T && x[i+] != (a*x[i]+b) %M)//验证
{
ok=false;
break;
}
}
if(ok) return;
}
} int main()
{
while(cin>>T)
{
for(int i=; i<=*T-; i+=) cin>>x[i];
solve();
for(int i=; i<=*T; i+=) cout<<x[i]<<endl;
}
}

简洁明了, 没什么可说的, 注意循环的边界条件, 还有a+=2不要写成a++。

另一种扩展欧几里得的解法, 我下次再补吧。

UVa 12169 Disgruntled Judge 紫书的更多相关文章

  1. UVA.12169 Disgruntled Judge ( 拓展欧几里得 )

    UVA.12169 Disgruntled Judge ( 拓展欧几里得 ) 题意分析 给出T个数字,x1,x3--x2T-1.并且我们知道这x1,x2,x3,x4--x2T之间满足xi = (a * ...

  2. UVA 12169 Disgruntled Judge 扩展欧几里得

    /** 题目:UVA 12169 Disgruntled Judge 链接:https://vjudge.net/problem/UVA-12169 题意:原题 思路: a,b范围都在10000以内. ...

  3. UVa 12169 - Disgruntled Judge(拓展欧几里德)

    链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...

  4. UVA 12169 Disgruntled Judge 枚举+扩展欧几里得

    题目大意:有3个整数 x[1], a, b 满足递推式x[i]=(a*x[i-1]+b)mod 10001.由这个递推式计算出了长度为2T的数列,现在要求输入x[1],x[3],......x[2T- ...

  5. UVA 12169 Disgruntled Judge【扩展欧几里德】

    题意:随机选取x1,a,b,根据公式xi=(a*xi-1+b)%10001得到一个长度为2*n的序列,奇数项作为输入,求偶数项,若有多种,随机输出一组答案. 思路:a和b均未知,可以考虑枚举a和b,时 ...

  6. UVA 12169 Disgruntled Judge

    我该怎么说这道题呢...说简单其实也简单,就枚举模拟,开始卡了好久,今天看到这题没a又写了遍,看似会超时的代码交上去a了,果然实践是检验真理的唯一标准... #include <iostream ...

  7. hdu 2769 uva 12169 Disgruntled Judge 拓展欧几里德

    //数据是有多水 连 10^10的枚举都能过 关于拓展欧几里德:大概就是x1=y2,y1=x2-[a/b]y2,按这个规律递归到gcd(a,0)的形式,此时公因数为a,方程也变为a*x+0*y=gcd ...

  8. UVA 12169 Disgruntled Judge(Extended_Euclid)

    用扩展欧几里德Extended_Euclid解线性模方程,思路在注释里面了. 注意数据范围不要爆int了. /********************************************* ...

  9. 紫书 例题 11-13 UVa 10735(混合图的欧拉回路)(最大流)

    这道题写了两个多小时-- 首先讲一下怎么建模 我们的目的是让所有点的出度等于入度 那么我们可以把点分为两部分, 一部分出度大于入度, 一部分入度大于出度 那么显然, 按照书里的思路,将边方向后,就相当 ...

随机推荐

  1. 测试员小白必经之路----常见的Dos命令

    Dos是什么? 是一个命令行执行的操作系统 进入终端: win + r 运行输入: cmd 当前计算机的本地时间:Time 退出当前正在执行的命令: ctrl +c 设置在多少时间后自动关机: Shu ...

  2. C# Base64加解密

    using System; using System.Collections.Generic; using System.Text; using System.Security.Cryptograph ...

  3. 树状数组求LIS模板

    如果数组元素较大,需要离散化. #include <iostream> #include <cstdio> #include <cstring> #include ...

  4. [易学易懂系列|golang语言|零基础|快速入门|(三)]

    接下来,我们主要讲讲package. 先列举下go的package的一些核心特性: 1.go的package不局限于一个文件,组成一个package的多个文件,编译后实际上和一个文件类似,组成包的不同 ...

  5. 2018-11-11-weekly

    Algorithm 601. 体育馆的人流量 What X 市建了一个新的体育馆,每日人流量信息被记录在这三列信息中:序号 (id).日期 (date). 人流量 (people).请编写一个查询语句 ...

  6. TCP/IP基础总结性学习(7)

    确保 Web 安全的 HTTPS 在 HTTP 协议中有可能存在信息窃听或身份伪装等安全问题.使用 HTTPS 通信机制可以有效地防止这些问题. 一. HTTP 的缺点 HTTP 主要有这些不足,例举 ...

  7. 【SaltStack官方版】—— job management

    JOB MANAGEMENT New in version 0.9.7. Since Salt executes jobs running on many systems, Salt needs to ...

  8. Nginx动静分离-tomcat

    一.动静分离 1.通过中间件将动态请求和静态请求分离. 2.为什么? 分离资源,减少不必要的请求消耗,减少请求延时. 3.场景 还可以利用php,fastcgi,python 等方式 处理动态请求 # ...

  9. [CSP-S模拟测试]:方程的解(小学奥数)

    题目描述 给出一个二元一次方程$ax+by=c$,其中$x$.$y$是未知数,求它的正整数解的数量. 输入格式 第一行一个整数$T$,表示有$T$组数据.接下来$T$行,每行$3$个整数$a$.$b$ ...

  10. SQL JOIN INNER LEFT RIGHT FULL

    1.引用2个表(效果同INNER  JOIN) SELECT Persons.LastName, Persons.FirstName, Orders.OrderNo FROM Persons, Ord ...