UVa 12169 Disgruntled Judge 紫书
思路还是按照紫书,枚举a,得出b, 然后验证。
代码参考了LRJ的。
#include <cstdio>
#include <iostream>
using namespace std; const int maxn=*+;
const int M=;
int x[maxn], T; void solve()
{
for(int a=; a<M; a++)
for(int b=; b<M; b++)
{
bool ok=true;
for(int i=; i<=*T; i+=)
{
x[i] = (a*x[i-]+b) %M;
if(i+<=*T && x[i+] != (a*x[i]+b) %M)//验证
{
ok=false;
break;
}
}
if(ok) return;
}
} int main()
{
while(cin>>T)
{
for(int i=; i<=*T-; i+=) cin>>x[i];
solve();
for(int i=; i<=*T; i+=) cout<<x[i]<<endl;
}
}
简洁明了, 没什么可说的, 注意循环的边界条件, 还有a+=2不要写成a++。
另一种扩展欧几里得的解法, 我下次再补吧。
UVa 12169 Disgruntled Judge 紫书的更多相关文章
- UVA.12169 Disgruntled Judge ( 拓展欧几里得 )
UVA.12169 Disgruntled Judge ( 拓展欧几里得 ) 题意分析 给出T个数字,x1,x3--x2T-1.并且我们知道这x1,x2,x3,x4--x2T之间满足xi = (a * ...
- UVA 12169 Disgruntled Judge 扩展欧几里得
/** 题目:UVA 12169 Disgruntled Judge 链接:https://vjudge.net/problem/UVA-12169 题意:原题 思路: a,b范围都在10000以内. ...
- UVa 12169 - Disgruntled Judge(拓展欧几里德)
链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...
- UVA 12169 Disgruntled Judge 枚举+扩展欧几里得
题目大意:有3个整数 x[1], a, b 满足递推式x[i]=(a*x[i-1]+b)mod 10001.由这个递推式计算出了长度为2T的数列,现在要求输入x[1],x[3],......x[2T- ...
- UVA 12169 Disgruntled Judge【扩展欧几里德】
题意:随机选取x1,a,b,根据公式xi=(a*xi-1+b)%10001得到一个长度为2*n的序列,奇数项作为输入,求偶数项,若有多种,随机输出一组答案. 思路:a和b均未知,可以考虑枚举a和b,时 ...
- UVA 12169 Disgruntled Judge
我该怎么说这道题呢...说简单其实也简单,就枚举模拟,开始卡了好久,今天看到这题没a又写了遍,看似会超时的代码交上去a了,果然实践是检验真理的唯一标准... #include <iostream ...
- hdu 2769 uva 12169 Disgruntled Judge 拓展欧几里德
//数据是有多水 连 10^10的枚举都能过 关于拓展欧几里德:大概就是x1=y2,y1=x2-[a/b]y2,按这个规律递归到gcd(a,0)的形式,此时公因数为a,方程也变为a*x+0*y=gcd ...
- UVA 12169 Disgruntled Judge(Extended_Euclid)
用扩展欧几里德Extended_Euclid解线性模方程,思路在注释里面了. 注意数据范围不要爆int了. /********************************************* ...
- 紫书 例题 11-13 UVa 10735(混合图的欧拉回路)(最大流)
这道题写了两个多小时-- 首先讲一下怎么建模 我们的目的是让所有点的出度等于入度 那么我们可以把点分为两部分, 一部分出度大于入度, 一部分入度大于出度 那么显然, 按照书里的思路,将边方向后,就相当 ...
随机推荐
- Kubernetes 入门-学习-nginx安装-dashboard安装
一.入门 1.Kubernetes中文社区---http://docs.kubernetes.org.cn/ 2.Kubernetes集群组件: - etcd 一个高可用的K/V键值对存储和服务发现系 ...
- Linux之目录与路径
特殊的目录: “.”,代表此层目录 “..”,代表上一层目录 “-”,代表前一个工作目录 “~”,代表“目前用户身份”所在的主文件夹 “~account”,代表account这个用户的主文件夹(acc ...
- 长短时间记忆的中文分词 (LSTM for Chinese Word Segmentation)
翻译学长的一片论文:Long Short-Term Memory Neural Networks for Chinese Word Segmentation 传统的neural Model for C ...
- Linux加载一个可执行程序并启动的过程
原创作品转载请注明出处 + <Linux内核分析>MOOC课程http://mooc.study.163.com/course/USTC-1000029000 作者:严哲璟 以shell下 ...
- nacos 动态刷新@ConfigurationProperties
使用@ConfigurationProperties 可以替换@value @ConfigurationProperties @Value 注解功能 可以批量注入配置文件中的属性 只能一个个指定注 ...
- 进行移动端rem适配
(function (designWidth, maxWidth) { var doc = document, win = window; var docEl = doc.documentElemen ...
- 弹性盒子FlexBox简介(一)
一.理解弹性盒子 弹性盒子是CSS3的一种新的布局模式. CSS3弹性盒子(Flexible Box或flexbox),是一种当页面需要适应不同的屏幕大小以及设备类型时,确保元素拥有恰当的行为的布局方 ...
- 【bzoj1927】[Sdoi2010]星际竞速
题目描述: 10 年一度的银河系赛车大赛又要开始了.作为全银河最盛大的活动之一, 夺得这个项目的冠军无疑是很多人的梦想,来自杰森座 α星的悠悠也是其中之一. 赛车大赛的赛场由 N 颗行星和M条双向星际 ...
- ionic使用自定义icon
参考文档:https://www.jianshu.com/p/5346fee9fd80 angular+ionic 自定义图标 注意: 这里不用name 用class类名显示出来 最后出来图标是个小 ...
- element的隐藏组件滚动条el-scrollbar使用
elementui中有个隐藏的组件,就是element官网使用的滚动条,tree 左右滑动滚动条 ①首先全局引入element,import ElementUI from 'element-ui'; ...