传送







这道题最最暴力的方法就是对于每一个询问都跑一边多重背包问题,但显然q不会那么友好的让我们用暴力过掉这道题。

考虑优化。我们可以先把裸的多重背包搞成二进制优化后的多重背包。但是复杂度依然无法接受。接下来使用吸氧和register等玄学优化 然而你发现你还是T了

那我们可不可以记录下来第i种不选,总容量为j($1\leq j\leq 1000$时的最大价值?想法很好,但是暴力写出来复杂度还是太高(O(\(1000n^2logn\)))

暴力写出来的


for(int i=1;i=st[i]&&k=w[k];j--)
f[i][j]=max(f[i][j],f[i][j-w[k]]+v[k]);
}
}

上面的程序复杂度主要高在什么地方呢?f[i][j]和f[i-1][j]相比,考虑的物品多了第i-1种物品,少了第i种物品,而其他不变。但是上面的程序枚举哪一种物品不选后就全部重新考虑了一遍,会造成很大的浪费。

为了减少浪费,我们可以把上面的f[i][j]拆成两部分。可以先算出选1i-1种物品最大价值,再算出选i+1n种物品的最大价值,枚举合并的价值即可。

Code:
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<queue>
#include<cstring>
#include<cmath>
using namespace std;
const int inf=214748364;
typedef long long ll;
inline int read()
{
char ch=getchar();
int x=0;bool f=0;
while(ch<'0'||ch>'9')
{
if(ch=='-')f=1;
ch=getchar();
}
while(ch>='0'&&ch<='9')
{
x=(x<<3)+(x<<1)+(ch^48);
ch=getchar();
}
return f?-x:x;
}
int n,w[10009],v[10009],q,t;
int st[1009],en[1009],me,meyo[300009],m[300009],dp[2009][1009],f[1009][1009],g[1009][1009];
bool have[1009][1009],ha[1009];
void Dp()
{
for(register int duliu=1;duliu<=n;duliu++)
{
for(int j=1;j<=1000;j++)
f[duliu][j]=f[duliu-1][j];
for(int i=st[duliu-1];i<=en[duliu-1];i++)
for(int j=1000;j>=w[i];j--)
f[duliu][j]=max(f[duliu][j],f[duliu][j-w[i]]+v[i]);
}
for(int duliu=n;duliu>=1;duliu--)
{
for(int j=1;j<=1000;j++)
g[duliu][j]=g[duliu+1][j];
for(int i=st[duliu+1];i<=en[duliu+1];i++)
for(int j=1000;j>=w[i];j--)
g[duliu][j]=max(g[duliu][j],g[duliu][j-w[i]]+v[i]);
}
}
int main()
{
memset(st,0x3f,sizeof(st));
n=read();
for(register int i=1;i<=n;i++)
{
int mo=read(),va=read(),num=read();
int k=1;
st[i]=t+1;
while(num>=k)
{
w[++t]=mo*k;
v[t]=va*k;
num-=k;
k*=2;
}
if(num)
{
w[++t]=mo*num;
v[t]=va*num;
}
en[i]=t;
}
q=read();
for(register int i=1;i<=q;i++)
meyo[i]=read()+1,m[i]=read(),have[meyo[i]][m[i]]=1,ha[meyo[i]]=1;
Dp();
for(register int i=1;i<=q;i++)
{
int ans=0;
for(int j=0;j<=m[i];j++)
ans=max(ans,f[meyo[i]][j]+g[meyo[i]][m[i]-j]);
printf("%d\n",ans);
}
}

然鹅这题正解是cdq分治,but我不会

maybe窝搞完单调队列优化之后会回来写cdq分治的

希望上面那条不要变成最小鸽

洛谷P4095新背包问题的更多相关文章

  1. 洛谷P1242 新汉诺塔(dfs,模拟退火)

    洛谷P1242 新汉诺塔 最开始的思路是贪心地将盘子从大到小依次从初始位置移动到目标位置. 方法和基本的汉诺塔问题的方法一样,对于盘子 \(i\) ,将盘子 \(1\to i-1\) 放置到中间柱子上 ...

  2. 洛谷P4095||bzoj3163 [HEOI2013]Eden 的新背包问题

    https://www.luogu.org/problemnew/show/P4095 不太会.. 网上有神奇的做法: 第一种其实是暴力(复杂度3e8...)然而可以A.考虑多重背包,发现没有办法快速 ...

  3. 洛谷P1860 新魔法药水

    洛谷题目链接 动态规划: 这个题目调了我好久....结果循环变量写错了... 而且题目有个坑!!!只能用开始给你的$v$元买入东西 回归正题: 我们定义状态$ans[i][j]$表示第$i$个物品用了 ...

  4. 题解——洛谷P4095 [HEOI2013]Eden 的新背包问题(背包)

    思路很妙的背包 用了一些前缀和的思想 去掉了一个物品,我们可以从前i-1个和后i+1个推出答案 奇妙的思路 #include <cstdio> #include <algorithm ...

  5. 洛谷 P1305 新二叉树

    P1305 新二叉树 题目描述 输入一串完全二叉树,用遍历前序打出. 输入输出格式 输入格式: 第一行为二叉树的节点数n. 后面n行,每一个字母为节点,后两个字母分别为其左右儿子. 空节点用*表示 输 ...

  6. 洛谷P1860——新魔法药水

    传送门:QAQQAQ 题意:商店里有N种药水,每种药水都有一个售价和回收价.小S攒了V元钱,还会M种魔法,可以把一些药水合成另一种药水.他一天可以使用K次魔法,问他一天最多赚多少钱? N<=60 ...

  7. 洛谷 P1305 新二叉树 Label:字符串的输出总是有惊喜

    题目描述 输入一串完全二叉树,用遍历前序打出. 输入输出格式 输入格式: 第一行为二叉树的节点数n. 后面n行,每一个字母为节点,后两个字母分别为其左右儿子. 空节点用*表示 输出格式: 前序排列的完 ...

  8. 洛谷P1242 新汉诺塔

    传送门啦 首先要将第n个盘子从x到y,那么就要把比n小的盘子全部移到6-x-y,然后将n移到y 仔细想想:6代表的是3根初始柱,3根目标柱. 6-(x+y) 便是我们的中转柱了,因为到这个位置是最优的 ...

  9. 洛谷P1242 新汉诺塔 【神奇的递归】

    题目描述 设有n个大小不等的中空圆盘,按从小到大的顺序从1到n编号.将这n个圆盘任意的迭套在三根立柱上,立柱的编号分别为A.B.C,这个状态称为初始状态. 现在要求找到一种步数最少的移动方案,使得从初 ...

随机推荐

  1. openlayers之地图测距侧面

    项目背景vue-cli3.0 public下html需要引入文件 <link rel="stylesheet" href="<%= BASE_URL %> ...

  2. RabbitMQ从安装到使用

    一.在Linux中安装RabbitMQ 通过Docker安装: 获取镜像(选用management是带有管理界面的) docker pull rabbitmq:-management 查看下载好的镜像 ...

  3. Win10+Linux(CentOS) 双系统安装教程--踩坑实录

    最近心血来潮想给自己的笔记本装一套linux系统作为开发环境, 说干就干,首先先收集一下现在linux主流版本, 貌似现在市场上应用服务器比较多的是redhat相关产品,而ubuntu的优势在于它庞大 ...

  4. 实现MD5算法

    using System; using System.Text; using System.Security.Cryptography; namespace Common { /// <summ ...

  5. synology nas

    synology nas synology nas synology nas https://www.synology.cn/zh-cn

  6. 第六篇:Scrapy框架

    爬虫框架之Scrapy 一.介绍 二.安装 三.命令行工具 四.项目结构以及爬虫应用简介 五.Spiders 六.Selectors 七.Items 八.Item Pipelin 九. Dowload ...

  7. 能给个安全点的fifo吗

      调试一个基于altera  FPGA的项目,发现开机200次,就会有1到2次的开机不正常现象,但只要是成功开机了,无论运行多久都是正常的.   遇到这类问题,按照经验来说 一般首先想到的可能是电源 ...

  8. K8S简介

    简介 Kubernetes是一个开源的,用于管理云平台中多个主机上的容器化的应用,Kubernetes的目标是让部署容器化的应用简单并且高效(powerful),Kubernetes提供了应用部署,规 ...

  9. C++ 打印XPS文档

    CoInitializeEx(, COINIT_MULTITHREADED); IXpsOMObjectFactory *xpsFactory; HRESULT hr = CoCreateInstan ...

  10. 在最新的 create-react-app 中添加 less 支持

    前置知识: 把 webpack 的相关配置暴露出来 运行 git add -A 运行 git commit -m 'project init' 运行 yarn eject 然后选 y 项目中多出来两个 ...