深入理解 python 虚拟机:破解核心魔法——反序列化 pyc 文件

在前面的文章当中我们详细的对于 pyc 文件的结构进行了分析,pyc 文件主要有下面的四个部分组成:魔术、 Bite Filed 、修改日期和 Code Object 组成。在前面的文章当中我们已经对前面三个部分进行了字节角度的分析,直接从 pyc 文件当中读取对应的数据并且打印出来了。而在本篇文章当中我们将主要对 Code Object 进行分析,并且详细它是如何被反序列化的,通过本篇文章我们将能够把握整个 pyc 文件结构。

marshal 模块的魔力

序列化和反序列化 python 对象

marshal 是 python 自带的一个模块,他可以将一些 python 内置对象进行序列化和反序列化操作,甚至我们可以在一个文件当中序列话一个函数的 Code Object 对象,然后在另外一个文件反序列化这个 Code Object 对象并且执行它。

我们可以使用下面的代码将 python 当中的一些对象序列化操作,直接将 python 对边变成一个字节流,保存到磁盘当中:

import marshal

if __name__ == '__main__':
with open("pyobjects.bin", "wb") as fp:
marshal.dump(1, fp)
marshal.dump(1.5, fp)
marshal.dump("Hello World", fp)
marshal.dump((1, 2, 3), fp)
marshal.dump([1, 2, 3], fp)
marshal.dump({1, 2, 3}, fp)
marshal.dump(1+1j, fp)
marshal.dump({1: 2, 3: 4}, fp)

在上面的代码当中需要注意的是需要使用二进制方式 rb 打开文件,上面的程序执行完成之后会生成一个 pyobjects.bin 的二进制文件,我们可以使用 python 代码再将上面的 python 对象,比如整数、浮点数、字符串和列表元组等等反序列化出来。

import marshal

if __name__ == '__main__':
with open("pyobjects.bin", "rb") as fp:
print(marshal.load(fp))
print(marshal.load(fp))
print(marshal.load(fp))
print(marshal.load(fp))
print(marshal.load(fp))
print(marshal.load(fp))
print(marshal.load(fp))
print(marshal.load(fp))

上面的代码输出结果如下所示:

1
1.5
Hello World
(1, 2, 3)
[1, 2, 3]
{1, 2, 3}
(1+1j)
{1: 2, 3: 4}

从上面代码的输出结果我们可以看到我们可以将所有的被写入到二进制文件当中的数据全部解析了出来。

序列化和反序列化 CodeObject

除了上面使用 marshal 对 python 的基本对象进行序列化和反序列化,我们可以使用 marshal 模块对 CodeObject 进行同样的操作,如果是这样的话,那么就可以将一个文件的代码序列化,然后另外一个程序反序列化再进行调用:

import marshal

def add(a, b):
print("Hello World")
return a+b with open("add.bin", "wb") as fp:
marshal.dump(add.__code__, fp)

在上面的代码当中,我们打开了文件 add.bin 然后将 add 函数的 CodeObject 对象写入到文件当中去,而 CodeObject 当中保存了函数 add 的所有执行所需要的信息,因此我们可以在另外一个文件当中打开这个文件,然后将 CodeObject 对象反序列化出来在执行这个代码,我们看下面的代码:

import marshal

def name():
pass with open("add.bin", "rb+") as fp:
code = marshal.load(fp)
name.__code__ = code
print(name(1, 2))

上面的代码执行结果如下所示:

Hello World
3

可以看到反序列化之后的函数 add 复制到了 name 上,然后我们调用了函数 name 真的实现了打印和相加的效果,从这一点来看确实实现了我们在前面所提到的效果。

Python 对象反序列化

在本节当中将主要分析 python 对象序列化之后的二进制文件格式,我们到底应该如何解析这个文件,解析文件的规则是什么。在 cpython 当中对于每个数据类型的解析都是不一样的,marshal 支持 python 当中所有的基本数据类型,额外还支持 CodeObject ,在上面的验证代码当中我们已经使用 marshal 去做了一些序列化和反序列化操作。

在对 python 对象进行序列化的时候,每一个 python 对象主要是由两个部分组成的:

其中 type 占一个字节,用于表示接下里啊的 python 的对象类型,比如如字典、元组、集合之类的,而后面的 PyObject 就是实际的 python 数据类型了,需要注意的是对于 None、False、True 这种在虚拟机当中只有一个备份的对象,PyObject 是没有的,也就只有 type 这一个字段。

type 的种类具体如下所示,它只占用一个字节:

class TYPE(Enum):
TYPE_NULL = ord('0')
TYPE_NONE = ord('N')
TYPE_FALSE = ord('F')
TYPE_TRUE = ord('T')
TYPE_STOPITER = ord('S')
TYPE_ELLIPSIS = ord('.')
TYPE_INT = ord('i')
TYPE_INT64 = ord('I')
TYPE_FLOAT = ord('f')
TYPE_BINARY_FLOAT = ord('g')
TYPE_COMPLEX = ord('x')
TYPE_BINARY_COMPLEX = ord('y')
TYPE_LONG = ord('l')
TYPE_STRING = ord('s')
TYPE_INTERNED = ord('t')
TYPE_REF = ord('r')
TYPE_TUPLE = ord('(')
TYPE_LIST = ord('[')
TYPE_DICT = ord('{')
TYPE_CODE = ord('c')
TYPE_UNICODE = ord('u')
TYPE_UNKNOWN = ord('?')
TYPE_SET = ord('<')
TYPE_FROZENSET = ord('>')
FLAG_REF = 0x80
TYPE_ASCII = ord('a')
TYPE_ASCII_INTERNED = ord('A')
TYPE_SMALL_TUPLE = ord(')')
TYPE_SHORT_ASCII = ord('z')
TYPE_SHORT_ASCII_INTERNED = ord('Z')

我们接下来对上面的类型进行一一解释,首先我们需要了解下面几个方法,我们在后面的解析过程当中会使用到下面的内容:

class ByteStreamReader(object):

    @staticmethod
def read_int(buf: bytes):
return struct.unpack("<i", buf)[0] @staticmethod
def read_byte(buf):
return struct.unpack("<B", buf)[0] @staticmethod
def read_float(buf):
return struct.unpack("<f", buf)[0] @staticmethod
def read_double(buf):
return struct.unpack("<d", buf)[0] @staticmethod
def read_long(buf):
return struct.unpack("<q", buf)[0]

上面的的几个函数主要是将字节变成 byte、int 或者浮点数。接下来我们会实现一个类 PyObjectLoader,用于对 marshal 序列化之后的文件进行解析。类的构造函数如下所示:

class PyObjectLoader(object):

    def __init__(self, filename):
self.fp = open(filename, "rb")
self.flag = 0
self.refs = []

现在来对一个对象进行解析,根据我们前面谈到的内容首先我们需要读入一个字节的内容用于判断是那种数据类型:

def do_parse(self):
c = self.fp.read(1)
assert len(c) != 0, "can not read more data from file descriptor"
t = ByteStreamReader.read_byte(c) & (~TYPE.FLAG_REF.value)
self.flag = ByteStreamReader.read_byte(c) & TYPE.FLAG_REF.value

在上面的代码当中使用函数 do_parse 对一个 python 对象进行解析操作,使用到了 TYPE.FLAG_REF,这个字段的作用表示这个 python 对象是不是一个可引用的,除了 None 、True、False、StopIteration、Ellipsis 是不可引用对象,集合、字典、不可变集合、字符串、字节、CodeObject 等是可引用对象,可引用对象的 type 的最高位是 1(也就是 type 的第 8 个比特位是 1),非可引用对象就是 0 。如果是可引用对象需要将这个对象加入到引用列表当中,因为可能会存在一个对象引用其他对象的情况,需要将对象加入到引用队列当中,如果需要对对象进行引用操作直接使用下标从引用数组当中查找即可。所有的可引用对象在创建完成之后都需要加入到引用列表当中。

  • TYPE_NULL,这个在 cpython 虚拟机当中就会直接返回 NULL 。
  • TYPE_NONE,返回 python 对象 None 。
  • TYPE_FALSE,返回 python 对象 False 。
  • TYPE_TRUE,返回 python 对象 True 。
  • TYPE_STOPITER,返回 StopIteration 对象。
  • TYPE_ELLIPSIS,返回 对象 Ellipsis 。
  • TYPE_INT,如果是这个数据类型表示接下来的 4 个字节的数据是一个整数。
  • TYPE_INT64,这个类型表示接下来的 8 个字节表示一个整数。
  • TYPE_BINARY_FLOAT,浮点数对象,表示接下里啊的 8 个字节表示一个浮点数。
  • TYPE_BINARY_COMPLEX,复数对象,表示接下来有两个 8 个字节的浮点数,分别表示实部和虚部。
  • TYPE_STRING,这个表示一个 bytes 对象,接下来的四个字节表示一个整数 size ,整数 size 的含义表示还需要读取的字节个数,因此接下来的 size 个字节就是 bytes 对象的内容。
  • TYPE_INTERNED,表示一个需要缓存到字符串常量池的字符串,解析方法和 TYPE_STRING 一样首先读取四个字节得到一个整数 size,然后在读取 size 个字节,表示字符串的内容,我们在 python 当中可以直接使用 .decode("utf-8") 进行编码。
  • TYPE_REF,表示需要引用一个对象,读取四个字节作为整数 size,然后从引用列表当中获取下标为 size 的对象。
  • TYPE_TUPLE,表示一个元组,首先读取四个字节的数据得到一个整数 size ,然后使用 for 循环递归调用 do_parse 函数获取 size 的对象。
  • TYPE_LIST,解析方式和 TYPE_TUPLE 一样,只不过返回列表对象。
  • TYPE_DICT,这个解析的方式不断的调用 do_parse 函数,从 1 开始计数,奇数对象当作 key,偶数对象当中 val,直到遇到 NULL,跳出循环停止解析,这个类型可以直接看下面的解析代码,非常清晰。
  • TYPE_CODE,这个类型表示一个 CodeObject 对象,见下面的解析代码,这部分代码可以结合 CodeObject 的字段分析,前面24 个字节表示整数对象,用于表示 CodeObject 的 6 个字段,接下来的是 8 个 PyObject 对象,因此需要调用 do_parse 函数进行解析,然后再解析一个 4 字节的整数表示第一行代码的行号,最后再读取一个 PyObject 对象。
  • TYPE_UNICODE,表示一个字符串,读取方式和 TYPE_INTERNED 一样。
  • TYPE_SET,前 4 个自己表示集合当中元素的个数 size,接下来使用 for 循环读取(调用 do_parse) size 的元素加入到集合当中。
  • TYPE_FROZENSET,和 TYPE_SET 读取方式一样,只不过返回 frozen set 。
  • TYPE_ASCII,和 TYPE_UNICODE 读取方式一样,也可以使用 utf-8 编码,虽然读取的是 ASCII 编码的字符,但是 utf-8 兼容 ASCII 因此也可以。
  • TYPE_ASCII_INTERNED,和 TYPE_ASCII 解析方式一样。
  • TYPE_SMALL_TUPLE,读取一个字节的数据表示元组当中的数据个数,然后读取对应个数的对象。
  • TYPE_SHORT_ASCII,之前是读取四个字节作为长度,现在只读取一个字节作为字节个数。
  • TYPE_SHORT_ASCII_INTERNED,和 TYPE_SHORT_ASCII 读取方式一样,只不过加入到字符串常量池子。

余下的对象的解析不在一一解释,大家可以直接看下方代码,都是比较清晰易懂的。

class PyObjectLoader(object):

    def __init__(self, filename):
self.reader = ByteStreamReader()
self.fp = open(filename, "rb")
self.flag = 0
self.refs = [] def do_parse(self):
c = self.fp.read(1)
assert len(c) != 0, "can not read more data from file descriptor"
t = ByteStreamReader.read_byte(c) & (~TYPE.FLAG_REF.value)
self.flag = ByteStreamReader.read_byte(c) & TYPE.FLAG_REF.value
match t:
case TYPE.TYPE_NULL.value:
return None
case TYPE.TYPE_NONE.value:
return None
case TYPE.TYPE_FALSE.value:
return False
case TYPE.TYPE_TRUE.value:
return True
case TYPE.TYPE_STOPITER.value:
return StopIteration
case TYPE.TYPE_ELLIPSIS.value:
return Ellipsis
case TYPE.TYPE_INT.value:
ret = ByteStreamReader.read_int(self.fp.read(4))
self.refs.append(ret)
return TYPE.TYPE_INT, ret
case TYPE.TYPE_INT64.value:
ret = ByteStreamReader.read_long(self.fp.read(8))
self.refs.append(ret)
return TYPE.TYPE_INT64, ret
case TYPE.TYPE_FLOAT.value:
raise RuntimeError("Unsupported TYPE TYPE_FLOAT")
case TYPE.TYPE_BINARY_FLOAT.value:
ret = ByteStreamReader.read_double(self.fp.read(8))
self.refs.append(ret)
return TYPE.TYPE_FLOAT, ret
case TYPE.TYPE_COMPLEX.value:
raise RuntimeError("Unsupported TYPE TYPE_COMPLEX")
case TYPE.TYPE_BINARY_COMPLEX.value:
ret = complex(self.do_parse(), self.do_parse())
self.refs.append(ret)
return TYPE.TYPE_BINARY_COMPLEX, ret
case TYPE.TYPE_LONG.value:
raise RuntimeError("Unsupported TYPE TYPE_LONG")
case TYPE.TYPE_STRING.value:
size = ByteStreamReader.read_int(self.fp.read(4))
ret = self.fp.read(size)
self.refs.append(ret)
return TYPE.TYPE_STRING, ret
case TYPE.TYPE_INTERNED.value:
size = ByteStreamReader.read_int(self.fp.read(4))
ret = self.fp.read(size).decode("utf-8")
self.refs.append(ret)
return TYPE.TYPE_INTERNED, ret
case TYPE.TYPE_REF.value:
size = ByteStreamReader.read_int(self.fp.read(4))
return TYPE.TYPE_REF, self.refs[size]
case TYPE.TYPE_TUPLE.value:
size = ByteStreamReader.read_int(self.fp.read(4))
ret = []
self.refs.append(ret)
for i in range(size):
ret.append(self.do_parse())
return TYPE.TYPE_TUPLE, tuple(ret)
case TYPE.TYPE_LIST.value:
size = ByteStreamReader.read_int(self.fp.read(4))
ret = []
self.refs.append(ret)
for i in range(size):
ret.append(self.do_parse())
return TYPE.TYPE_LIST, ret
case TYPE.TYPE_DICT.value:
ret = dict()
self.refs.append(ret)
while True:
key = self.do_parse()
if key is None:
break
val = self.do_parse()
if val is None:
break
ret[key] = val
return TYPE.TYPE_DICT, ret
case TYPE.TYPE_CODE.value:
ret = dict()
idx = len(self.refs)
self.refs.append(None)
ret["argcount"] = ByteStreamReader.read_int(self.fp.read(4))
ret["posonlyargcount"] = ByteStreamReader.read_int(self.fp.read(4))
ret["kwonlyargcount"] = ByteStreamReader.read_int(self.fp.read(4))
ret["nlocals"] = ByteStreamReader.read_int(self.fp.read(4))
ret["stacksize"] = ByteStreamReader.read_int(self.fp.read(4))
ret["flags"] = ByteStreamReader.read_int(self.fp.read(4)) ret["code"] = self.do_parse()
ret["consts"] = self.do_parse()
ret["names"] = self.do_parse()
ret["varnames"] = self.do_parse()
ret["freevars"] = self.do_parse()
ret["cellvars"] = self.do_parse()
ret["filename"] = self.do_parse()
ret["name"] = self.do_parse()
ret["firstlineno"] = ByteStreamReader.read_int(self.fp.read(4))
ret["lnotab"] = self.do_parse()
self.refs[idx] = ret
return TYPE.TYPE_CODE, ret
case TYPE.TYPE_UNICODE.value:
size = ByteStreamReader.read_int(self.fp.read(4))
ret = self.fp.read(size).decode("utf-8")
self.refs.append(ret)
return TYPE.TYPE_INTERNED, ret
case TYPE.TYPE_UNKNOWN.value:
raise RuntimeError("Unknown value " + str(t))
case TYPE.TYPE_SET.value:
size = ByteStreamReader.read_int(self.fp.read(4))
ret = set()
self.refs.append(ret)
for i in range(size):
ret.add(self.do_parse())
return TYPE.TYPE_SET, ret
case TYPE.TYPE_FROZENSET.value:
size = ByteStreamReader.read_int(self.fp.read(4))
ret = set()
idx = len(self.refs)
self.refs.append(None)
for i in range(size):
ret.add(self.do_parse())
self.refs[idx] = ret
return TYPE.TYPE_SET, frozenset(ret)
case TYPE.TYPE_ASCII.value:
size = ByteStreamReader.read_int(self.fp.read(4))
ret = self.fp.read(size).decode("utf-8")
self.refs.append(ret)
return TYPE.TYPE_INTERNED, ret
case TYPE.TYPE_ASCII_INTERNED.value:
size = ByteStreamReader.read_int(self.fp.read(4))
ret = self.fp.read(size).decode("utf-8")
self.refs.append(ret)
return TYPE.TYPE_ASCII_INTERNED, ret
case TYPE.TYPE_SMALL_TUPLE.value:
size = ByteStreamReader.read_byte(self.fp.read(1))
ret = []
self.refs.append(ret)
for i in range(size):
ret.append(self.do_parse())
return TYPE.TYPE_SMALL_TUPLE, tuple(ret)
case TYPE.TYPE_SHORT_ASCII.value:
size = ByteStreamReader.read_byte(self.fp.read(1))
ret = self.fp.read(size).decode("utf-8")
self.refs.append(ret)
return TYPE.TYPE_SHORT_ASCII, ret
case TYPE.TYPE_SHORT_ASCII_INTERNED.value:
size = ByteStreamReader.read_byte(self.fp.read(1))
ret = self.fp.read(size).decode("utf-8")
self.refs.append(ret)
return TYPE.TYPE_SHORT_ASCII_INTERNED, ret
case _:
raise RuntimeError("can not parse " + str(t)) def __del_(self):
self.fp.close()

我们现在使用下面的代码生成一些二进制文件:

import marshal

def add(a, b):
print("Hello World")
return a+b if __name__ == '__main__':
with open("add.bin", "wb") as fp:
marshal.dump(add.__code__, fp) with open("int.bin", "wb") as fp:
marshal.dump(1, fp)
with open("float.bin", "wb") as fp:
marshal.dump(1.5, fp)
with open("tuple.bin", "wb") as fp:
marshal.dump((1, 2, 3), fp)
with open("set.bin", "wb") as fp:
marshal.dump({1, 2, 3}, fp)
with open("list.bin", "wb") as fp:
marshal.dump([1, 2, 3], fp)
with open("dict.bin", "wb") as fp:
marshal.dump({1: 2, 3: 4}, fp)
with open("code.bin", "wb") as fp:
marshal.dump(add.__code__, fp) with open("string.bin", "wb") as fp:
marshal.dump("Hello World", fp)

当我们使用 marshal 对函数 add 的 code 进行序列化的时候实际上就是序列化一个 CodeObject 对象,这个对象的结果实际上和 pyc 的结构是一样的。

我们使用下面的代码进行反序列化:

if __name__ == '__main__':
assert sys.version_info.major == 3 and sys.version_info.minor == 10, "only python3.10 works"
loader = PyObjectLoader("int.bin")
print(loader.do_parse())
loader = PyObjectLoader("float.bin")
print(loader.do_parse())
loader = PyObjectLoader("set.bin")
print(loader.do_parse())
loader = PyObjectLoader("dict.bin")
print(loader.do_parse())
loader = PyObjectLoader("tuple.bin")
print(loader.do_parse())
loader = PyObjectLoader("list.bin")
print(loader.do_parse())
loader = PyObjectLoader("string.bin")
print(loader.do_parse())
loader = PyObjectLoader("code.bin")
pprint(loader.do_parse())

需要注意的是本篇文章代码需要在 python 3.10 上运行,如果需要在 3.8 3.9 运行的话可以将 match 语句改成 if-else 语句。但是由于 python 3.11 当中的 CodeObject 对象的字段发生了一些微小的变化,因此上面的代码是不能在 python 3.11 上执行的。上面的代码执行结果如下所示:

(<TYPE.TYPE_INT: 105>, 1)
(<TYPE.TYPE_FLOAT: 102>, 1.5)
(<TYPE.TYPE_SET: 60>, {(<TYPE.TYPE_INT: 105>, 1), (<TYPE.TYPE_INT: 105>, 2), (<TYPE.TYPE_INT: 105>, 3)})
(<TYPE.TYPE_DICT: 123>, {(<TYPE.TYPE_INT: 105>, 1): (<TYPE.TYPE_INT: 105>, 2), (<TYPE.TYPE_INT: 105>, 3): (<TYPE.TYPE_INT: 105>, 4)})
(<TYPE.TYPE_SMALL_TUPLE: 41>, ((<TYPE.TYPE_INT: 105>, 1), (<TYPE.TYPE_INT: 105>, 2), (<TYPE.TYPE_INT: 105>, 3)))
(<TYPE.TYPE_LIST: 91>, [(<TYPE.TYPE_INT: 105>, 1), (<TYPE.TYPE_INT: 105>, 2), (<TYPE.TYPE_INT: 105>, 3)])
(<TYPE.TYPE_SHORT_ASCII: 122>, 'Hello World')
(<TYPE.TYPE_CODE: 99>,
{'argcount': 2,
'cellvars': (<TYPE.TYPE_REF: 114>, 'print'),
'code': (<TYPE.TYPE_STRING: 115>,
b't\x00d\x01\x83\x01\x01\x00|\x00|\x01\x17\x00S\x00'),
'consts': (<TYPE.TYPE_SMALL_TUPLE: 41>,
(None, (<TYPE.TYPE_SHORT_ASCII: 122>, 'Hello World'))),
'filename': (<TYPE.TYPE_SHORT_ASCII: 122>,
'/Users/xxxxxxx/Desktop/workdir/dive-into-cpython/code/marshal_demos/add.py'),
'firstlineno': 5,
'flags': 67,
'freevars': (<TYPE.TYPE_SMALL_TUPLE: 41>, ()),
'kwonlyargcount': 0,
'lnotab': (<TYPE.TYPE_STRING: 115>, b'\x08\x01\x08\x01'),
'name': (<TYPE.TYPE_SHORT_ASCII_INTERNED: 90>, 'add'),
'names': (<TYPE.TYPE_SMALL_TUPLE: 41>,
((<TYPE.TYPE_SHORT_ASCII_INTERNED: 90>, 'print'),)),
'nlocals': 2,
'posonlyargcount': 0,
'stacksize': 2,
'varnames': (<TYPE.TYPE_SMALL_TUPLE: 41>,
((<TYPE.TYPE_SHORT_ASCII_INTERNED: 90>, 'a'),
(<TYPE.TYPE_SHORT_ASCII_INTERNED: 90>, 'b')))})

从上面的解析结果来看我们是实现了正确的解析的。

总结

在本篇文章当中主要给大家分析了 python 对象序列化之后我们该如何反序列化这些对象,并且使用 python 对二进制文件进行了分析,可以成功的将 python 对象解析出来,但是我们忽略了两个稍微复杂一点的对象,他们的解析稍微有点复杂,但是我们平时的变成当中很少使用到,因此本文的代码解析一般的文件都是可以的。


本篇文章是深入理解 python 虚拟机系列文章之一,文章地址:https://github.com/Chang-LeHung/dive-into-cpython

更多精彩内容合集可访问项目:https://github.com/Chang-LeHung/CSCore

关注公众号:一无是处的研究僧,了解更多计算机(Java、Python、计算机系统基础、算法与数据结构)知识。

深入理解 python 虚拟机:破解核心魔法——反序列化 pyc 文件的更多相关文章

  1. 深入理解 Python 虚拟机:整型(int)的实现原理及源码剖析

    深入理解 Python 虚拟机:整型(int)的实现原理及源码剖析 在本篇文章当中主要给大家介绍在 cpython 内部是如何实现整型数据 int 的,主要是分析 int 类型的表示方式,分析 int ...

  2. 深入理解 Python 虚拟机:集合(set)的实现原理及源码剖析

    深入理解 Python 虚拟机:集合(set)的实现原理及源码剖析 在本篇文章当中主要给大家介绍在 cpython 虚拟机当中的集合 set 的实现原理(哈希表)以及对应的源代码分析. 数据结构介绍 ...

  3. 深入理解 python 虚拟机:pyc 文件结构

    深入理解 python 虚拟机:pyc 文件结构 在本篇文章当中主要给大家介绍一下 .py 文件在被编译之后对应的 pyc 文件结构,pyc 文件当中的一个核心内容就是 python 字节码. pyc ...

  4. 深入理解 python 虚拟机:字节码教程(1)——原来装饰器是这样实现的

    深入理解 python 虚拟机:字节码教程(1)--原来装饰器是这样实现的 在本篇文章当中主要给大家介绍在 cpython 当中一些比较常见的字节码,从根本上理解 python 程序的执行.在本文当中 ...

  5. 深入理解 python 虚拟机:字节码教程(3)——深入剖析循环实现原理

    深入理解 python 虚拟机:字节码教程(3)--深入剖析循环实现原理 在本篇文章当中主要给大家介绍 cpython 当中跟循环相关的字节码,这部分字节码相比起其他字节码来说相对复杂一点,通过分析这 ...

  6. 深入理解python虚拟机:程序执行的载体——栈帧

    深入理解python虚拟机:程序执行的载体--栈帧 栈帧(Stack Frame)是 Python 虚拟机中程序执行的载体之一,也是 Python 中的一种执行上下文.每当 Python 执行一个函数 ...

  7. 深入理解python虚拟机:调试器实现原理与源码分析

    深入理解python虚拟机:调试器实现原理与源码分析 调试器是一个编程语言非常重要的部分,调试器是一种用于诊断和修复代码错误(或称为 bug)的工具,它允许开发者在程序执行时逐步查看和分析代码的状态和 ...

  8. 深入理解 Python 虚拟机:元组(tuple)的实现原理及源码剖析

    深入理解 Python 虚拟机:元组(tuple)的实现原理及源码剖析 在本篇文章当中主要给大家介绍 cpython 虚拟机当中针对列表的实现,在 Python 中,tuple 是一种非常常用的数据类 ...

  9. 深入理解 Python 虚拟机:浮点数(float)的实现原理及源码剖析

    深入理解 Python 虚拟机:浮点数(float)的实现原理及源码剖析 在本篇文章当中主要分析在 cpython 虚拟机当中 float 类型的实现原理以及与他相关的一些源代码. Float 数据结 ...

  10. 深入理解 Python 虚拟机:复数(complex)的实现原理及源码剖析

    深入理解 Python 虚拟机:复数(complex)的实现原理及源码剖析 在本篇文章当中主要给大家介绍在 cpython 虚拟机当中是如何实现 复数 complex 这个数据类型的,这个数据类型在 ...

随机推荐

  1. ASP.NET Core - 配置系统之配置提供程序

    3. 配置提供程序 上面提到,通过 IConfigurationBuilder 的实现类对象,我们可以自由地往配置系统中添加不同的配置提供程序,从而获取不同来源的配置信息..NET Core 中,微软 ...

  2. win10、win11安装子系统kali linux、图形化界面的安装

    1.开启安装Linux子系统需要的扩展 Win+Q搜索功能 勾选需要的扩展,Hyper-V.Windows 虚拟机监控平台.适用于Linux的Windows子系统.虚拟机平台 反正这些有关于虚拟机的全 ...

  3. Android studio软件的安装过程详解

    步骤详解 进入官网,下载相关软件 官网地址:https://developer.android.google.cn/studio/ 点击该页面里面的这个按钮,就能够很轻松地完成下载操作: 弹出弹窗,继 ...

  4. Stream 未释放系统资源问题处理

    Unreleased Resource: Streams Abstract 程序可能无法成功释放某一项系统资源. Explanation 程序可能无法成功释放某一项系统资源. 资源泄露至少有两种常见的 ...

  5. Mathematica做数字图像处理中的ImageConvolve练习

    目录 ImageConvolve练习 original right sobel 垂直边检测 top sobel 水平边检测 通过一个平方内核的卷积使图像变平滑 类似ConstantArray[1, { ...

  6. LockSupport 详解

    更多内容,前往IT-BLOG LockSupport 用来创建锁和其他同步类的基本线程阻塞原语.简而言之,当调用 LockSupport.park时,表示当前线程将会等待,直至获得许可,当调用 Loc ...

  7. 好饭不怕晚,Google基于人工智能AI大语言对话模型Bard测试和API调用(Python3.10)

    谷歌(Google)作为开源过著名深度学习框架Tensorflow的超级大厂,是人工智能领域一股不可忽视的中坚力量,旗下新产品Bard已经公布测试了一段时间,毁誉参半,很多人把Google的Bard和 ...

  8. FileReader之获取文本文件内容为字符串

    FileReader之获取文本文件内容为字符串 FileReader官网描述: FileReader 对象允许 Web 应用程序异步读取存储在用户计算机上的文件(或原始数据缓冲区)的内容,使用 Fil ...

  9. vue之数组与对象的检测与更新

    目录 说明 语法 示例 说明 MVVM会自动检测变量的变化,当变量改变,页面也会对应的变化,但是有一点需要注意,如果有一个对象增加值的时候,不能直接修改,需要使用Vue.set()方法 语法 Vue. ...

  10. window远程桌面之通过修改端口链接

      windows开启及连接远程桌面 技术标签: 后端开发  windows         桌面 -> 此电脑 图标右键 -> 属性 远程设置 远程桌面 -> 修改为允许远程连接到 ...