题目


分析

考虑区间修改比较难操作,将数组差分一下,转化成两次单点修改。

这样查询前缀的异或值就是该位置的异或值,线性基可以用线段树维护,

那么取出 \((l,r]\) 所在的线性基,再将 \(a[l]\) 扔入线性基查询最大异或值即可

因为如果要取出 \(a_x\) 实则就是取出 \(a_l\) xor \(b_{l+1}\) xor \(\dots\) xor \(b_x\)。

所以区间异或有时转化成差分加单点异或,维护区间线性基可以这样做。


代码

#include <cstdio>
#include <cctype>
#include <cstring>
#define rr register
using namespace std;
const int N=50011;
int a[N],n,m;
inline signed iut(){
rr int ans=0; rr char c=getchar();
while (!isdigit(c)) c=getchar();
while (isdigit(c)) ans=(ans<<3)+(ans<<1)+(c^48),c=getchar();
return ans;
}
inline void print(int ans){
if (ans>9) print(ans/10);
putchar(ans%10+48);
}
struct Vector_Space{
int re[30],now;
inline void BUILD(){memset(re,0,sizeof(re));}
inline void Insert(int x){
for (rr int i=29;~i;--i)
if ((x>>i)&1){
if (re[i]) x^=re[i];
else {re[i]=x; return;}
}
}
inline signed query(int x){
for (rr int i=29;~i;--i)
if ((x^re[i])>x) x^=re[i];
return x;
}
}w[N<<2];
inline Vector_Space Merge(Vector_Space A,Vector_Space B){
for (rr int i=29;~i;--i)
if (B.re[i]) A.Insert(B.re[i]);
A.now^=B.now;
return A;
}
inline void build(int k,int l,int r){
if (l==r) {w[k].Insert(w[k].now^=a[l]); return;}
rr int mid=(l+r)>>1;
build(k<<1,l,mid);
build(k<<1|1,mid+1,r);
w[k]=Merge(w[k<<1],w[k<<1|1]);
}
inline void update(int k,int l,int r,int x,int y){
if (l==r) {w[k].BUILD(),w[k].Insert(w[k].now^=y); return;}
rr int mid=(l+r)>>1;
if (x<=mid) update(k<<1,l,mid,x,y);
else update(k<<1|1,mid+1,r,x,y);
w[k]=Merge(w[k<<1],w[k<<1|1]);
}
inline signed query(int k,int l,int r,int x){
if (l==r) return w[k].now;
rr int mid=(l+r)>>1;
if (x<=mid) return query(k<<1,l,mid,x);
else return query(k<<1|1,mid+1,r,x)^w[k<<1].now;//前缀xor
}
inline Vector_Space Query(int k,int l,int r,int x,int y){
if (l==x&&r==y) return w[k];
rr int mid=(l+r)>>1;
if (y<=mid) return Query(k<<1,l,mid,x,y);
else if (x>mid) return Query(k<<1|1,mid+1,r,x,y);
else return Merge(Query(k<<1,l,mid,x,mid),Query(k<<1|1,mid+1,r,mid+1,y));
}
signed main(){
n=iut(); m=iut();
for (rr int i=1;i<=n;++i) a[i]=iut();
for (rr int i=n;i>1;--i) a[i]^=a[i-1];
build(1,1,n);
for (rr int i=1;i<=m;++i){
rr int opt=iut(),l=iut(),r=iut(),x=iut();
if (opt==1){
update(1,1,n,l,x);
if (r<n) update(1,1,n,r+1,x);
}else{
rr int Al=query(1,1,n,l);
if (l==r) {print(x>(x^Al)?x:(x^Al)),putchar(10); continue;}
rr Vector_Space t=Query(1,1,n,l+1,r);
t.Insert(Al),print(t.query(x)),putchar(10);
}
}
return 0;
}

#线性基,差分,线段树#洛谷 5607 [Ynoi2013] 无力回天 NOI2017的更多相关文章

  1. CodeForces - 587E[线段树+线性基+差分] ->(线段树维护区间合并线性基)

    题意:给你一个数组,有两种操作,一种区间xor一个值,一个是查询区间xor的结果的种类数 做法一:对于一个给定的区间,我们可以通过求解线性基的方式求出结果的种类数,而现在只不过将其放在线树上维护区间线 ...

  2. 洛谷 P5607 [Ynoi2013] 无力回天 NOI2017

    人生第一道Ynoi,开心 Description https://www.luogu.com.cn/problem/P5607 Solution 拿到这个题,看了一下,发现询问要求最大异或和,怎么办? ...

  3. 【Luogu3733】[HAOI2017]八纵八横(线性基,线段树分治)

    [Luogu3733][HAOI2017]八纵八横(线性基,线段树分治) 题面 洛谷 题解 看到求异或最大值显然就是线性基了,所以只需要把所有环给找出来丢进线性基里就行了. 然后线性基不资磁撤销?线段 ...

  4. bzoj 4184: shallot【线性基+时间线段树】

    学到了线段树新姿势! 先离线读入,根据时间建一棵线段树,每个节点上开一个vector存这个区间内存在的数(使用map来记录每个数出现的一段时间),然后在线段树上dfs,到叶子节点就计算答案. 注意!! ...

  5. 线段树 洛谷P3932 浮游大陆的68号岛

    P3932 浮游大陆的68号岛 题目描述 妖精仓库里生活着黄金妖精们,她们过着快乐,却随时准备着迎接死亡的生活. 换用更高尚的说法,是随时准备着为这个无药可救的世界献身. 然而孩子们的生活却总是无忧无 ...

  6. [线段树]洛谷P5278 算术天才⑨与等差数列

    题目描述 算术天才⑨非常喜欢和等差数列玩耍. 有一天,他给了你一个长度为n的序列,其中第i个数为a[i]. 他想考考你,每次他会给出询问l,r,k,问区间[l,r]内的数从小到大排序后能否形成公差为k ...

  7. 区间连续长度的线段树——洛谷P2894 [USACO08FEB]酒店Hotel

    https://www.luogu.org/problem/P2894 #include<cstdio> #include<iostream> using namespace ...

  8. 【bzoj5028】小Z的加油店 扩展裴蜀定理+差分+线段树

    题目描述 给出 $n$ 个瓶子和无限的水,每个瓶子有一定的容量.每次你可以将一个瓶子装满水,或将A瓶子内的水倒入B瓶子中直到A倒空或B倒满.$m$ 次操作,每次给 $[l,r]$ 内的瓶子容量增加 $ ...

  9. [Luogu5327][ZJOI2019]语言(树上差分+线段树合并)

    首先可以想到对每个点统计出所有经过它的链的并所包含的点数,然后可以直接得到答案.根据实现不同有下面几种方法.三个log:假如对每个点都存下经过它的链并S[x],那么每新加一条路径进来的时候,相当于在路 ...

  10. [BZOJ3307] 雨天的尾巴(树上差分+线段树合并)

    [BZOJ3307] 雨天的尾巴(树上差分+线段树合并) 题面 给出一棵N个点的树,M次操作在链上加上某一种类别的物品,完成所有操作后,要求询问每个点上最多物品的类型. N, M≤100000 分析 ...

随机推荐

  1. 网络上收集的C++常见面试题

    1. 进程与线程的关系,图解 进程简单理解就是我们平常使用的程序,进程拥有自己独立的内存空间地址,拥有一个以上的线程. 线程可以理解为轻量级的进程,是程序执行的最小单元.在某个进程启动后,会默认产生一 ...

  2. Python2升级到Python3

    操作系统环境:CentOS Linux release 7.4.1708 (Core). 系统默认Python版本为2.7. 升级前的版本信息: [root@cch-spider-web1 ~]# l ...

  3. 解决pip install时出现的Could not fetch URL https://pypi.org/simple/pip/问题

    打开windows的我的电脑,在最上方目录栏输入%APPDATA%,回车,接着会定位到一个新的目录, 目录路径为C:\Users\Administrator\AppData\Roaming,在这个目录 ...

  4. go词法作用域陷进

    问题 // 创建一些目录,再将目录删除 // 错误写法 var rmdirs []func() for _, dir := range tempDirs() { os.MkdirAll(dir, 07 ...

  5. 老生常谈的iOS- weak原理,你真的懂得还是为了应付面试

    前言 weak对于iOS开发来说只要解决一些对象相互引用的时候,避免出现强强引用,对象不能被释放,出现内存泄露的问题. weak 关键字的作用域弱引用,所引用对象的计数器不会加一,并在引用对象被释放的 ...

  6. Html飞机大战(十四): 分数编辑和生命值设定

    好家伙,这章让我感受到了面向对象的优势了   1.分数设置 每个种类的敌机分数都设置好了, 那么当我们击毁不同的敌机后,加上不同的分数就行了 但是我们还是要想一下,   我要在哪里放这个分数增加的方法 ...

  7. 详解 nebula 2.0 性能测试和 nebula-importer 数据导入调优

    这是由社区用户--繁凡撰写的一篇他的实践分享,主要讲解如何进行 Nebula 性能测试以及数据导入部分的性能调优.下文中出现的"我"代指用户繁凡. 0. 概要 之前在做 Nebul ...

  8. 【对比】Gemini:听说GPT-4你小子挺厉害

    前言 缘由 谷歌连放大招:Gemini Pro支持中文,Bard学会画画 事情起因: 一心只读圣贤书的狗哥,不经意间被新闻吸引.[谷歌最新人工智能模型Gemini Pro已在欧洲上市 将与ChatGP ...

  9. GDB调试入门笔记

    目录 What? Why How 安装GDB 安装命令 查看是否安装成功 调试简单的程序 预备一个程序 调试 使用 break info list next print step 一些小技巧 在gdb ...

  10. vue3自定义Hooks

    比较简单的小demo,直接上代码吧 ts使用defineComponent,setup()里面使用 Composition API 写法,逻辑块清晰,不用前后文查找,拒绝 spaghetti code ...