题目传送门


分析

禁不住 QuantAsk 的诱惑(bushi)

考虑一条路线可以由若干段 \(1-2-\dots-n-\dots-2\) 以及 最后一段 \(1-\dots-x\) 组成。

对于最后一段可以求出它的期望时间设为 \(len\) ,对于这若干段循环节,可以求出它的概率设为 \(P\),

那么最终的期望时间 \(ans=P(ans+2n-2)+len\)

也就是有 \(P\) 的概率会多走 \(2n-2\) 步,否则期望走 \(len\) 步终止

把方程解出来得到 \(ans=\frac{P(2n-2)+len}{1-P}\)


代码

#include <cstdio>
#define rr register
using namespace std;
const int mod=1000000007;
int n,A,B,C,len,P=1,p[2000011];
inline signed ksm(int x,int y){
rr int ans=1;
for (;y;y>>=1,x=1ll*x*x%mod)
if (y&1) ans=1ll*ans*x%mod;
return ans;
}
signed main(){
scanf("%d%d%d%d%d",&n,&p[1],&A,&B,&C);
for (rr int i=2;i<=n;++i) p[i]=p[n*2-i]=(1ll*A*p[i-1]%mod*p[i-1]+1ll*B*p[i-1]+C)%mod;
for (rr int i=1;i<2*n-1;++i){
len=(len+(i-1ll)*P%mod*p[i]%mod)%mod;
P=(mod-p[i]+1ll)*P%mod;
}
len=(len+P*(2ll*n-2)%mod)%mod;
return !printf("%lld",1ll*len*ksm(mod-P+1,mod-2)%mod);
}

#期望dp#51nod 2015 诺德街的更多相关文章

  1. 51Nod 1450 闯关游戏 —— 期望DP

    题目:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1450 期望DP: INF 表示这种情况不行,转移时把不行的概率也转 ...

  2. 【BZOJ-1419】Red is good 概率期望DP

    1419: Red is good Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 660  Solved: 257[Submit][Status][Di ...

  3. [NOIP2016]换教室 D1 T3 Floyed+期望DP

    [NOIP2016]换教室 D1 T3 Description 对于刚上大学的牛牛来说, 他面临的第一个问题是如何根据实际情况中情合适的课程. 在可以选择的课程中,有2n节课程安排在n个时间段上.在第 ...

  4. HDU 4336 Card Collector (期望DP+状态压缩 或者 状态压缩+容斥)

    题意:有N(1<=N<=20)张卡片,每包中含有这些卡片的概率,每包至多一张卡片,可能没有卡片.求需要买多少包才能拿到所以的N张卡片,求次数的期望. 析:期望DP,是很容易看出来的,然后由 ...

  5. 【BZOJ-4008】亚瑟王 概率与期望 + DP

    4008: [HNOI2015]亚瑟王 Time Limit: 20 Sec  Memory Limit: 512 MBSec  Special JudgeSubmit: 832  Solved: 5 ...

  6. 期望dp BZOJ3450+BZOJ4318

    BZOJ3450 概率期望DP f[i]表示到i的期望得分,g[i]表示到i的期望长度. 分三种情况转移: ① s[i]=‘x’:f[i]=f[i-1],g[i]=0 ② s[i]=‘o’:f[i]= ...

  7. HDU 4405 期望DP

    期望DP算是第一题吧...虽然巨水但把思路理理清楚总是好的.. 题意:在一个1×n的格子上掷色子,从0点出发,掷了多少前进几步,同时有些格点直接相连,即若a,b相连,当落到a点时直接飞向b点.求走到n ...

  8. POJ 2096 【期望DP】

    题意: 有n种选择,每种选择对应m种状态.每种选择发生的概率相等,每种选择中对应的每种状态发生的概率相等. 求n种选择和m种状态中每种至少发生一次的期望. 期望DP好别扭啊.要用倒推的方法. dp[i ...

  9. ZOJ 3822 Domination 期望dp

    Domination Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://acm.zju.edu.cn/onlinejudge/showProblem ...

  10. poj 2096 Collecting Bugs(期望 dp 概率 推导 分类讨论)

    Description Ivan is fond of collecting. Unlike other people who collect post stamps, coins or other ...

随机推荐

  1. 解决Linux平台Selenium截图中文乱码问题

    通常情况下,像CentOS这样的Linux发行版默认是缺少中文字体的,所以在执行Selenium截图时,如果目标网页中有中文,则截图后中文将会显示为方块一样的乱码. 解决办法:手动安装中文字体即可. ...

  2. zookeeper源码(09)follower处理客户端请求

    在zookeeper中,follower也可以接收客户端连接,处理客户端请求,本文将分析follower处理客户端请求的流程: 读请求处理 写请求转发与响应 follower接收转发客户端请求 网络层 ...

  3. 在矩池云使用Llama2-7B的方法

    今天给大家分享如何在矩池云服务器使用 Llama2-7b模型. 硬件要求 矩池云已经配置好了 Llama 2 Web UI 环境,显存需要大于 8G,可以选择 A4000.P100.3090 以及更高 ...

  4. 【Azure Logic App】使用Outlook.com发送邮件遇到429报错

    问题描述 在Logic App中使用 Outlook.com组件发送邮件,遇见了outlook connection报429的错误 {"error":{"code&quo ...

  5. STL-RBT_map,set模拟实现

    set #include"26RBT_container.h" namespace test { //set通过普通迭代器使用const迭代器实现限制key不能被修改 templa ...

  6. 第18章_MySQL8其它新特性

    # 目录: https://www.cnblogs.com/xjwhaha/p/15844178.html 1. MySQL8新特性概述 MySQL从5.7版本直接跳跃发布了8.0版本,可见这是一个令 ...

  7. WPF --- 重写圆角DataGrid样式

    引言 因要符合UI设计, 需要一个圆角的 DataGrid 样式,其需要一个,所以需要重写DataGrid的样式, 代码 具体样式代码如下: <ResourceDictionary xmlns= ...

  8. sign 单词学习 - 本质:去分开

    sign 英[saɪn],美[saɪn] n. 符号; 指示牌; 手势; 征兆; 正负号; 星座 v. 签名; 签约; 打手语 词源说明(童理民) sign : 来自拉丁语signum,符号,标志,图 ...

  9. 2.4G无线音频一对多传输解决方案难点解析

    前记     2.4G无线音频传输是一个非主流的应用,做这个的人 相对要比较少.但是,这个领域所涉及到的知识却不少,也就导致了这个领域是好入门,但是东西想做好特别难.这里涉及到声学,无线协议,电子,设 ...

  10. stars-one的原创工具——文档生成器

    Github 可以快速生成静态页面文档的工具,适用于文档翻译或者是个人项目,个人开发者可以快速将生成的静态页面部署在gitee或者github上 优点 规范 使用流行的markdown格式编写文档 美 ...