Pytorch语法——torch.autograd.grad
The torch.autograd.grad
function is a part of PyTorch's automatic differentiation package and is used to compute the gradients of given outputs with respect to given inputs. This function is useful when you need to compute gradients explicitly, rather than accumulating them in the .grad
attribute of the input tensors.
Parameters:
- outputs: A sequence of tensors representing the outputs of the differentiated function.
- inputs: A sequence of tensors for which gradients will be calculated.
- grad_outputs: The "vector" in the vector-Jacobian product, usually gradients with respect to each output. Default is None.
- retain_graph: If set to False, the computation graph will be freed. Default value depends on the
create_graph
parameter. - create_graph: If set to True, the graph of the derivative will be constructed, allowing higher-order derivative products. Default is False.
- allow_unused: If set to False, specifying unused inputs when computing outputs will raise an error. Default is False.
- is_grads_batched: If set to True, the first dimension of each tensor in grad_outputs will be interpreted as the batch dimension. Default is False.
Return type:
A tuple containing the gradients with respect to each input tensor.
Example:
Consider a simple example of computing the gradient of a function y = x^2 with respect to x. Here, x is the input and y is the output.
import torch
# Define the input tensor and enable gradient tracking
x = torch.tensor(2.0, requires_grad=True)
# Define the function y = x^2
y = x ** 2
# Compute the gradient of y with respect to x
grads = torch.autograd.grad(outputs=y, inputs=x)
print(grads) # Output: (tensor(4.0),)
In this example, we first define the input tensor x
with a value of 2.0 and enable gradient tracking by setting requires_grad=True
. Then, we define the function y = x^2
. Next, we compute the gradient of y
with respect to x
using torch.autograd.grad(outputs=y, inputs=x)
. The result is a tuple containing the gradient (4.0 in this case), which is the derivative of x^2 with respect to x evaluated at x=2.
The grad_outputs
parameter in the torch.autograd.grad
function represents the "vector" in the vector-Jacobian product. It is a sequence of tensors containing the gradients with respect to each output. The grad_outputs parameter is used when you want to compute a specific vector-Jacobian product, instead of the full Jacobian matrix.
When the gradient is computed using torch.autograd.grad
, PyTorch computes the dot product of the Jacobian matrix (the matrix of partial derivatives) and the provided grad_outputs
vector. If grad_outputs
is not provided (i.e., set to None), PyTorch assumes it to be a vector of ones with the same shape as the output tensor.
Here's an example to help illustrate the concept:
import torch
# Define input tensors and enable gradient tracking
x = torch.tensor(2.0, requires_grad=True)
y = torch.tensor(3.0, requires_grad=True)
# Define the output function: z = x^2 + y^2
z = x ** 2 + y ** 2
# Compute the gradients of z with respect to x and y using different grad_outputs values
# Case 1: Default grad_outputs (None)
grads1 = torch.autograd.grad(outputs=z, inputs=(x, y))
print("Case 1 - Default grad_outputs:", grads1) # Output: (tensor(4.0), tensor(6.0))
# Case 2: Custom grad_outputs (scalar value)
grad_outputs_scalar = torch.tensor(2.0)
grads2 = torch.autograd.grad(outputs=z, inputs=(x, y), grad_outputs=grad_outputs_scalar)
print("Case 2 - Custom grad_outputs (scalar):", grads2) # Output: (tensor(8.0), tensor(12.0))
# Case 3: Custom grad_outputs (tensor value)
grad_outputs_tensor = torch.tensor(3.0)
grads3 = torch.autograd.grad(outputs=z, inputs=(x, y), grad_outputs=grad_outputs_tensor)
print("Case 3 - Custom grad_outputs (tensor):", grads3) # Output: (tensor(12.0), tensor(18.0))
In this example, we define two input tensors x
and y
with values 2.0 and 3.0 respectively, and enable gradient tracking by setting requires_grad=True
. Then, we define the output function z = x^2 + y^2
. We compute the gradients of z
with respect to x
and y
using three different values for grad_outputs
.
- Case 1 - Default
grad_outputs
: The gradients are (4.0, 6.0), which correspond to the partial derivatives of z with respect to x and y (2x and 2y) evaluated at x=2 and y=3. - Case 2 - Custom
grad_outputs
(scalar): We provide a scalar value of 2.0 asgrad_outputs
. The gradients are (8.0, 12.0), which are the original gradients (4.0, 6.0) multiplied by the scalar value 2. - Case 3 - Custom
grad_outputs
(tensor): We provide a tensor value of 3.0 asgrad_outputs
. The gradients are (12.0, 18.0), which are the original gradients (4.0, 6.0) multiplied by the tensor value 3.
As you can see from the examples, providing different values for grad_outputs
affects the resulting gradients, as it represents the vector in the vector-Jacobian product. This parameter can be useful when you want to weight the gradients differently, or when you need to compute a specific vector-Jacobian product.
Here's another example with a multi-output function to further illustrate the concept:
import torch
# Define input tensor and enable gradient tracking
x = torch.tensor([2.0, 3.0], requires_grad=True)
# Define the multi-output function: y = [x0^2, x1^2]
y = x ** 2
# Compute the gradients of y with respect to x using different grad_outputs values
# Case 1: Default grad_outputs (None)
grads1 = torch.autograd.grad(outputs=y, inputs=x)
print("Case 1 - Default grad_outputs:", grads1) # Output: (tensor([4., 6.]),)
# Case 2: Custom grad_outputs (tensor)
grad_outputs_tensor = torch.tensor([1.0, 2.0])
grads2 = torch.autograd.grad(outputs=y, inputs=x, grad_outputs=grad_outputs_tensor)
print("Case 2 - Custom grad_outputs (tensor):", grads2) # Output: (tensor([ 4., 12.]),)
In this example, we define an input tensor x
with two elements and enable gradient tracking. We then define a multi-output function y = [x0^2, x1^2]
. We compute the gradients of y
with respect to x
using different values for grad_outputs
.
- Case 1 - Default
grad_outputs
: The gradients are (4.0, 6.0), which correspond to the partial derivatives of y with respect to x (2x0 and 2x1) evaluated at x0=2 and x1=3. - Case 2 - Custom
grad_outputs
(tensor): We provide a tensor with values[1.0, 2.0]
asgrad_outputs
. The gradients are (4.0, 12.0), which are the original gradients (4.0, 6.0) multiplied element-wise by thegrad_outputs
tensor.
In the second case, the gradients are computed as the product of the Jacobian matrix and the provided grad_outputs
tensor. This allows us to compute specific vector-Jacobian products or weight the gradients differently for each output.
Pytorch语法——torch.autograd.grad的更多相关文章
- Pytorch中torch.autograd ---backward函数的使用方法详细解析,具体例子分析
backward函数 官方定义: torch.autograd.backward(tensors, grad_tensors=None, retain_graph=None, create_graph ...
- DEEP LEARNING WITH PYTORCH: A 60 MINUTE BLITZ | TORCH.AUTOGRAD
torch.autograd 是PyTorch的自动微分引擎,用以推动神经网络训练.在本节,你将会对autograd如何帮助神经网络训练的概念有所理解. 背景 神经网络(NNs)是在输入数据上执行的嵌 ...
- PyTorch 介绍 | AUTOMATIC DIFFERENTIATION WITH TORCH.AUTOGRAD
训练神经网络时,最常用的算法就是反向传播.在该算法中,参数(模型权重)会根据损失函数关于对应参数的梯度进行调整. 为了计算这些梯度,PyTorch内置了名为 torch.autograd 的微分引擎. ...
- PyTorch教程之Autograd
在PyTorch中,autograd是所有神经网络的核心内容,为Tensor所有操作提供自动求导方法. 它是一个按运行方式定义的框架,这意味着backprop是由代码的运行方式定义的. 一.Varia ...
- PyTorch Tutorials 2 AUTOGRAD: AUTOMATIC DIFFERENTIATION
%matplotlib inline Autograd: 自动求导机制 PyTorch 中所有神经网络的核心是 autograd 包. 我们先简单介绍一下这个包,然后训练第一个简单的神经网络. aut ...
- [pytorch笔记] torch.nn vs torch.nn.functional; model.eval() vs torch.no_grad(); nn.Sequential() vs nn.moduleList
1. torch.nn与torch.nn.functional之间的区别和联系 https://blog.csdn.net/GZHermit/article/details/78730856 nn和n ...
- Windows中安装Pytorch和Torch
近年来,深度学习框架如雨后春笋般的涌现出来,如TensorFlow.caffe.caffe2.PyTorch.Keras.Theano.Torch等,对于从事计算机视觉/机器学习/图像处理方面的研究者 ...
- Pytorch:module 'torch' has no attribute 'bool'
Pytorch:module 'torch' has no attribute 'bool' 这个应该是有些版本的Pytorch会遇到这个问题,我用0.4.0版本测试发现torch.bool是有的,但 ...
- pytorch的torch.utils.data.DataLoader认识
PyTorch中数据读取的一个重要接口是torch.utils.data.DataLoader,该接口定义在dataloader.py脚本中,只要是用PyTorch来训练模型基本都会用到该接口, 该接 ...
- pytorch中torch.nn构建神经网络的不同层的含义
主要是参考这里,写的很好PyTorch 入门实战(四)--利用Torch.nn构建卷积神经网络 卷积层nn.Con2d() 常用参数 in_channels:输入通道数 out_channels:输出 ...
随机推荐
- Java面向对象基础学习
一.面向对象语言编程 Java是一门面向对象的编程语言(OOP),万物皆对象 面向对象初步认识,在大多数编程语言中根据解决问题的思维方式不同分为两种编程语言 1.面向过程编程 2.面向 ...
- GO 项目依赖管理:go module总结
转载请注明出处: 1.go module介绍 go module是go官方自带的go依赖管理库,在1.13版本正式推荐使用 go module可以将某个项目(文件夹)下的所有依赖整理成一个 go.mo ...
- Linux网络编程(学习笔记)
文中python代码来自老师的教学代码,感谢我的老师~~ 1. linux网络数据处理过程: 网卡->协议栈->网络 1)应用层输出数据 socket层->协议层->接口层 2 ...
- MyBatis-plus自动填充功能
1.什么是mp的自动填充?这个功能是做什么的呢? 有的时候,我们可能有这样子的需求,在插入(insert)或者更新数据(update)的时候可以自动填充数据,比如密码,version等.在mp中为我们 ...
- Linux下日志管理工具Logrotate
背景: 项目上的Nginx和Tomcat已经跑了大半年了,Nginx的access.log和error.log将近1G大小:Tomcat下的catalina.out日志经常跑到打不出日志然后进行手动移 ...
- Dlang 并行化
Dlang 并行化 好难受,dlang 生态太差,没办法,学了半天才明白. 我尽量以精炼的语言解释. 采用 定义,例子(代码),解释 的步骤讲解. 所以你可能看到很多代码,一点解释-- 我会省略一些 ...
- 深度解读AIGC存储解决方案
5月26日,2023数据基础设施技术峰会在苏州举办,腾讯云首席存储技术专家温涛受邀出席并分享了腾讯云领先的存储技术在AIGC场景中的应用,通过对AIGC业务流程和场景的提炼,从内容生成.内容审核和内容 ...
- ERP开发流程
一.使用Xshell连线执行r.r adzi140 或 助记码r.t 都可以打开数据表设计器 表格建完后,DBA前三个需要点一下,如果表格显示需要表格重建,点最后一个,表格新建完成后,记得点击执行异动 ...
- centos系统给centos-root硬盘扩容
此服务器为虚拟机,通过lsblk命令查看当前虚拟机硬盘: 其中一块硬盘大小为100G,已作为系统盘使用,但是只分配了15G的空间使用,需要对剩余空间进行分区,并扩容到对应centos卷组的root目录 ...
- 【SpringBoot】WebSocket在线聊天
先看一下页面效果,有点简单粗暴!哈哈哈哈哈,别介意. 本文参考:SpringBoot2.0集成WebSocket,实现后台向前端推送信息 新建一个springboot项目 引入相关依赖 <dep ...