卷积神经网络中nn.Conv2d()和nn.MaxPool2d()

卷积神经网络之Pythorch实现:

nn.Conv2d()就是PyTorch中的卷积模块

参数列表

参数 作用
in_channels 输入数据体的深度
out_channels 输出数 据体的深度
kernel_size 滤波器(卷积核)的大小 注1
stride 滑动的步长
padding 零填充的圈数 注2
bias 是否启用偏置,默认是True,代表启用
groups 输出数据体深度上和输入数 据体深度上的联系 注3
dilation 卷积对于输入数据体的空间间隔 注4

注:1. 可以使用一 个数字来表示高和宽相同的卷积核,比如 kernel_size=3,也可以使用 不同的数字来表示高和宽不同的卷积核,比如 kernel_size=(3, 2);

  1. padding=0表示四周不进行零填充,而 padding=1表示四周进行1个像素点的零填充;

  2. groups表示输出数据体深度上和输入数 据体深度上的联系,默认 groups=1,也就是所有的输出和输入都是相 关联的,如果 groups=2,这表示输入的深度被分割成两份,输出的深 度也被分割成两份,它们之间分别对应起来,所以要求输出和输入都 必须要能被 groups整除。

  3. 默认dilation=1详情见 nn.Conv2d()中dilation参数的作用或者CSDN

nn.MaxPool2d()表示网络中的最大值池化

参数列表:

参数 作用
kernel_size 与上面nn.Conv2d()相同
stride 与上面nn.Conv2d()相同
padding 与上面nn.Conv2d()相同
dilation 与上面nn.Conv2d()相同
return_indices 表示是否返回最大值所处的下标,默认 return_indices=False
ceil_mode 表示使用一些方格代替层结构,默认 ceil_mode=False

注:一般不会去设置return_indicesceil_mode参数

import torch.nn as nn

class SimpleCNN(nn.Module):
def __init__(self):
super(SimpleCNN, self).__init__()
layer1 = nn.Sequential()
# 把一个三通道的照片RGB三个使用32组卷积核卷积,每组三个卷积核,组内卷积后相加得出32组输出
layer1.add_module('conv1', nn.Conv2d(3, 32, (3, 3), (1, 1), padding=1))
layer1.add_module('relu1', nn.ReLU(True))
layer1.add_module('pool1', nn.MaxPool2d(2, 2))
self.layer1 = layer1 layer2 = nn.Sequential()
layer2.add_module('conv2', nn.Conv2d(32, 64, (3, 3), (1, 1), padding=1))
layer2.add_module('relu2', nn.ReLU(True))
layer2.add_module('pool2', nn.MaxPool2d(2, 2))
self.layer2 = layer2 layer3 = nn.Sequential()
layer3.add_module('conv3', nn.Conv2d(64, 128, (3, 3), (1, 1), padding=1))
layer3.add_module('relu3', nn.ReLU(True))
layer3.add_module('pool3', nn.MaxPool2d(2, 2))
self.layer3 = layer3 layer4 = nn.Sequential()
layer4.add_module('fc1', nn.Linear(2048, 512))
layer4.add_module('fc_relu1', nn.ReLU(True))
layer4.add_module('fc2', nn.Linear(512, 64))
layer4.add_module('fc_relu2', nn.ReLU(True))
layer4.add_module('f3', nn.Linear(64, 10))
self.layer4 = layer4 def forward(self, x):
conv1 = self.layer1(x)
conv2 = self.layer2(conv1)
conv3 = self.layer3(conv2)
fc_input = conv3.view(conv3.size(0), -1)
fc_out = self.layer4(fc_input)
return fc_out model = SimpleCNN()
print(model)

输出

SimpleCNN(
(layer1): Sequential(
(conv1): Conv2d(3, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(relu1): ReLU(inplace=True)
(pool1): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
)
(layer2): Sequential(
(conv2): Conv2d(32, 64, kernel_size=(3, 3), stride=(1, 1))
(relu2): ReLU(inplace=True)
(pool2): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
)
(layer3): Sequential(
(conv3): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(relu3): ReLU(inplace=True)
(pool3): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
)
(layer4): Sequential(
(fc1): Linear(in_features=2048, out_features=512, bias=True)
(fc_relu1): ReLU(inplace=True)
(fc2): Linear(in_features=512, out_features=64, bias=True)
(fc_relu2): ReLU(inplace=True)
(f3): Linear(in_features=64, out_features=10, bias=True)
)
)

提取模型的层级结构

提取层级结构可以使用以下几个nn.Model的属性,第一个是children()属性,它会返回下一级模块的迭代器,在上面这个模型中,它会返回在self.layer1,self.layer2,self.layer4上的迭代器而不会返回它们内部的东西;modules()

会返回模型中所有的模块的迭代器,这样它就能访问到最内层,比如self.layer1.conv1这个模块;还有一个与它们相对应的是name_children()属性以及named_modules(),这两个不仅会返回模块的迭代器,还会返回网络层的名字。

提取出model中的前两层

nn.Sequential(*list(model.children())[:2])

输出:

Sequential(
(0): Sequential(
(conv1): Conv2d(3, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(relu1): ReLU(inplace=True)
(pool1): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
)
(1): Sequential(
(conv2): Conv2d(32, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(relu2): ReLU(inplace=True)
(pool2): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
)
)

提取出model中的所有卷积层

conv_model = nn.Sequential()
for layer in model.named_modules():
if isinstance(layer[1], nn.Conv2d):
conv_model.add_module(layer[0].split('.')[1] ,layer[1])
print(conv_model)

输出:

Sequential(
(conv1): Conv2d(3, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv2): Conv2d(32, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(conv3): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
)

提取网络参数并对其初始化

nn.Moudel里面有两个特别重要的关于参数的属性,分别是named_parameters()parameters()。前者会输出网络层的名字和参数的迭代器,后者会给出一个网络的全部参数的迭代器。

for param in model.named_parameters():
print(param[0])
# print(param[1])

输出:

layer1.conv1.weight
layer1.conv1.bias
layer2.conv2.weight
layer2.conv2.bias
layer3.conv3.weight
layer3.conv3.bias
layer4.fc1.weight
layer4.fc1.bias
layer4.fc2.weight
layer4.fc2.bias
layer4.f3.weight
layer4.f3.bias

主流神经网络案例分析

案例:使用卷积神经网络实现对Minist数据集的预测

import matplotlib.pyplot as plt
import torch.utils.data
import torchvision.datasets
import os
import torch.nn as nn
from torchvision import transforms class CNN(nn.Module):
def __init__(self):
super(CNN, self).__init__()
self.layer1 = nn.Sequential(
nn.Conv2d(1, 16, kernel_size=(3, 3)),
nn.BatchNorm2d(16),
nn.ReLU(inplace=True),
) self.layer2 = nn.Sequential(
nn.Conv2d(16, 32, kernel_size=(3, 3)),
nn.BatchNorm2d(32),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2),
) self.layer3 = nn.Sequential(
nn.Conv2d(32, 64, kernel_size=(3, 3)),
nn.BatchNorm2d(64),
nn.ReLU(inplace=True)
) self.layer4 = nn.Sequential(
nn.Conv2d(64, 128, kernel_size=(3, 3)),
nn.BatchNorm2d(128),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2)
) self.fc = nn.Sequential(
nn.Linear(128 * 4 * 4, 1024),
nn.ReLU(inplace=True),
nn.Linear(1024, 128),
nn.Linear(128, 10)
) def forward(self, x):
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = x.view(x.size(0), -1)
x = self.fc(x)
return x os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE" data_tf = transforms.Compose(
[transforms.ToTensor(),
transforms.Normalize([0.5], [0.5])]
) train_dataset = torchvision.datasets.MNIST(root='F:/机器学习/pytorch/书/data/mnist', train=True,
transform=data_tf, download=True) test_dataset = torchvision.datasets.MNIST(root='F:/机器学习/pytorch/书/data/mnist', train=False,
transform=data_tf, download=True) batch_size = 100
train_loader = torch.utils.data.DataLoader(
dataset=train_dataset, batch_size=batch_size
) test_loader = torch.utils.data.DataLoader(
dataset=test_dataset, batch_size=batch_size
) model = CNN()
model = model.cuda()
criterion = nn.CrossEntropyLoss()
criterion = criterion.cuda()
optimizer = torch.optim.Adam(model.parameters()) # 节约时间,三次够了
iter_step = 3
loss1 = []
loss2 = []
for step in range(iter_step):
loss1_count = 0
loss2_count = 0
for images, labels in train_loader:
images = images.cuda()
labels = labels.cuda()
images = images.reshape(-1, 1, 28, 28)
output = model(images)
pred = output.squeeze() optimizer.zero_grad()
loss = criterion(pred, labels)
loss.backward()
optimizer.step() _, pred = torch.max(pred, 1) loss1_count += int(torch.sum(pred == labels)) / 100
# 测试
else:
test_loss = 0
accuracy = 0
with torch.no_grad():
for images, labels in test_loader:
images = images.cuda()
labels = labels.cuda()
pred = model(images.reshape(-1, 1, 28, 28))
_, pred = torch.max(pred, 1)
loss2_count += int(torch.sum(pred == labels)) / 100 loss1.append(loss1_count / len(train_loader))
loss2.append(loss2_count / len(test_loader)) print(f'第{step}次训练:训练准确率:{loss1[len(loss1)-1]},测试准确率:{loss2[len(loss2)-1]}') plt.plot(loss1, label='Training loss')
plt.plot(loss2, label='Validation loss')
plt.legend()

输出:

第0次训练:训练准确率:0.9646166666666718,测试准确率:0.9868999999999996
第1次训练:训练准确率:0.9865833333333389,测试准确率:0.9908999999999998
第2次训练:训练准确率:0.9917000000000039,测试准确率:0.9879999999999994
<matplotlib.legend.Legend at 0x21f03092fd0>

卷积神经网络中nn.Conv2d()和nn.MaxPool2d()以及卷积神经网络实现minist数据集分类的更多相关文章

  1. tf.nn.conv2d。卷积函数

    tf.nn.conv2d是TensorFlow里面实现卷积的函数,参考文档对它的介绍并不是很详细,实际上这是搭建卷积神经网络比较核心的一个方法,非常重要 tf.nn.conv2d(input, fil ...

  2. 【TensorFlow】tf.nn.conv2d是怎样实现卷积的?

    tf.nn.conv2d是TensorFlow里面实现卷积的函数,参考文档对它的介绍并不是很详细,实际上这是搭建卷积神经网络比较核心的一个方法,非常重要 tf.nn.conv2d(input, fil ...

  3. TF-卷积函数 tf.nn.conv2d 介绍

    转自 http://www.cnblogs.com/welhzh/p/6607581.html 下面是这位博主自己的翻译加上测试心得 tf.nn.conv2d是TensorFlow里面实现卷积的函数, ...

  4. tf.nn.conv2d 参数介绍

    tf.nn.conv2d是TensorFlow里面实现卷积的函数,参考文档对它的介绍并不是很详细,实际上这是搭建卷积神经网络比较核心的一个方法,非常重要 tf.nn.conv2d(input, fil ...

  5. Pytorch本人疑问(1) torch.nn和torch.nn.functional之间的区别

    在写代码时发现我们在定义Model时,有两种定义方法: torch.nn.Conv2d()和torch.nn.functional.conv2d() 那么这两种方法到底有什么区别呢,我们通过下述代码看 ...

  6. AI芯片:高性能卷积计算中的数据复用

    随着深度学习的飞速发展,对处理器的性能要求也变得越来越高,随之涌现出了很多针对神经网络加速设计的AI芯片.卷积计算是神经网络中最重要的一类计算,本文分析了高性能卷积计算中的数据复用,这是AI芯片设计中 ...

  7. 深度学习原理与框架-Tensorflow卷积神经网络-卷积神经网络mnist分类 1.tf.nn.conv2d(卷积操作) 2.tf.nn.max_pool(最大池化操作) 3.tf.nn.dropout(执行dropout操作) 4.tf.nn.softmax_cross_entropy_with_logits(交叉熵损失) 5.tf.truncated_normal(两个标准差内的正态分布)

    1. tf.nn.conv2d(x, w, strides=[1, 1, 1, 1], padding='SAME')  # 对数据进行卷积操作 参数说明:x表示输入数据,w表示卷积核, stride ...

  8. tf入门-tf.nn.conv2d是怎样实现卷积的?

    转自:https://blog.csdn.net/mao_xiao_feng/article/details/78004522 实验环境:tensorflow版本1.2.0,python2.7 介绍 ...

  9. Pytorch中nn.Conv2d的用法

    Pytorch中nn.Conv2d的用法 nn.Conv2d是二维卷积方法,相对应的还有一维卷积方法nn.Conv1d,常用于文本数据的处理,而nn.Conv2d一般用于二维图像. 先看一下接口定义: ...

  10. tf.nn.conv2d卷积函数之图片轮廓提取

    一.tensorflow中二维卷积函数的参数含义:def conv2d(input, filter, strides, padding, use_cudnn_on_gpu=True, data_for ...

随机推荐

  1. 如何阅读 Paper

    前言 论文(Paper)通常是新技术.算法.编程方法或软件工具的首次公布.通过阅读论文,我们可以了解最新的技术进展,保持自己的技能和知识是最新的. 同时,论文提供了对特定主题深入理解的机会.它们通常包 ...

  2. Golang 之 casbin(权限管理)

    目录 1. 权限管理 官网 编辑器测试 1.1.1. 特征 Casbin的作用 Casbin不执行的操作 1.1.2. 怎么运行的 1.1.3. 安装 1. 示例代码 xormadapter 2. 示 ...

  3. flask注册功能

    一个项目的简单结构划分 首先创建一个新项目 可以正常运行与访问 创建配置文件并添加配置. 将这里拆分到不同的文件中,让启动文件更加简洁. 创建一个apps包,导入配置模块,导入Flask,定义创建ap ...

  4. Web Service和Web API理解和使用场景

    Web Service 理解:Web Service 是一种基于网络的服务,它使用标准化的消息传递协议,最典型的是基于 SOAP(Simple Object Access Protocol)协议.SO ...

  5. Django用户认证组件 (auth模块)

    1.导入 auth 模块 # 认证模块 from django.contrib import auth # 对应数据库用户表,可以继承扩展 from django.contrib.auth.model ...

  6. 授权调用: 介绍 Transformers 智能体 2.0

    简要概述 我们推出了 Transformers 智能体 2.0! ⇒ 在现有智能体类型的基础上,我们新增了两种能够 根据历史观察解决复杂任务的智能体. ⇒ 我们致力于让代码 清晰.模块化,并确保最终提 ...

  7. 用python字典统计CSV数据

    1.用python字典统计CSV数据的步骤和代码示例 为了使用Python字典来统计CSV数据,我们可以使用内置的csv模块来读取CSV文件,并使用字典来存储统计信息.以下是一个详细的步骤和完整的代码 ...

  8. docker资源限制与数据持久化

    1. docker简介和核心概念 Docker 是一个开源的应用容器引擎,让开发者可以打包他们的应用以及依赖包到一个可移植的容器中,然后发布到任何流行的Linux机器上,也可以实现虚拟化.容器是完全使 ...

  9. unaipp 发送验证码倒计时

    view代码 <view class="margin-top" @tap="getCheckNum()"> <view class=" ...

  10. uniapp 拨打电话功能

    phoneNumber进行动态调用时候一定要添加引号,否则会报错 1 call() { 2 uni.makePhoneCall({ 3 phoneNumber: 'this.leads.tel' // ...