Hive设置map和reduce数量
一、控制hive任务中的map数:
- 通常情况下,作业会通过input的目录产生一个或者多个map任务。
主要的决定因素有: input的文件总个数,input的文件大小,集群设置的文件块大小(目前为128M, 可在hive中通过set dfs.block.size;命令查看到,该参数不能自定义修改); - 举例:
a) 假设input目录下有1个文件a,大小为780M,那么hadoop会将该文件a分隔成7个块(6个128m的块和1个12m的块),从而产生7个map数。
b) 假设input目录下有3个文件a,b,c,大小分别为10m,20m,130m,那么hadoop会分隔成4个块(10m,20m,128m,2m),从而产生4个map数,即如果文件大于块大小(128m),那么会拆分,如果小于块大小,则把该文件当成一个块。 - 是不是map数越多越好?
答案是否定的。如果一个任务有很多小文件(远远小于块大小128m),则每个小文件也会被当做一个块,用一个map任务来完成,而一个map任务启动和初始化的时间远远大于逻辑处理的时间,就会造成很大的资源浪费。而且,同时可执行的map数是受限的。 - 是不是保证每个map处理接近128m的文件块,就高枕无忧了?
答案也是不一定。比如有一个127m的文件,正常会用一个map去完成,但这个文件只有一个或者两个小字段,却有几千万的记录,如果map处理的逻辑比较复杂,用一个map任务去做,肯定也比较耗时。
针对上面的问题3和4,我们需要采取两种方式来解决:即减少map数和增加map数。
如何合并小文件,减少map数?
假设一个SQL任务:
Select count(1)
from popt_tbaccountcopy_mes
where pt = ‘2012-07-04’;
该任务的inputdir /group/p_sdo_data/p_sdo_data_etl/pt/popt_tbaccountcopy_mes/pt=2012-07-04共有194个文件,其中很多是远远小于128m的小文件,总大小9G,正常执行会用194个map任务。
Map总共消耗的计算资源: SLOTS_MILLIS_MAPS= 623,020。
我通过以下方法来在map执行前合并小文件,减少map数:
set mapred.max.split.size=100000000;
set mapred.min.split.size.per.node=100000000;
set mapred.min.split.size.per.rack=100000000;
set hive.input.format=org.apache.hadoop.hive.ql.io.CombineHiveInputFormat;
再执行上面的语句,用了74个map任务,map消耗的计算资源:SLOTS_MILLIS_MAPS= 333,500。
对于这个简单SQL任务,执行时间上可能差不多,但节省了一半的计算资源。
大概解释一下,100000000表示100M, set hive.input.format=org.apache.hadoop.hive.ql.io.CombineHiveInputFormat;这个参数表示执行前进行小文件合并,前面三个参数确定合并文件块的大小,大于文件块大小128m的,按照128m来分隔,小于128m,大于100m的,按照100m来分隔,把那些小于100m的(包括小文件和分割大文件剩下的)进行合并,最终生成了74个块。
如何适当的增加map数?
当input的文件都很大,任务逻辑复杂,map执行非常慢的时候,可以考虑增加Map数,来使得每个map处理的数据量减少,从而提高任务的执行效率。
假设有这样一个任务:
Select data_desc,
count(1),
count(distinct id),
sum(case when …),
sum(case when …),
sum(…)
from a group by data_desc
如果表a只有一个文件,大小为120M,但包含几千万的记录,如果用1个map去完成这个任务,肯定是比较耗时的,这种情况下,我们要考虑将这一个文件合理的拆分成多个,这样就可以用多个map任务去完成。
set mapred.reduce.tasks=10;
create table a_1 as
select * from a
distribute by rand(123);
这样会将a表的记录,随机的分散到包含10个文件的a_1表中,再用a_1代替上面sql中的a表,则会用10个map任务去完成。每个map任务处理大于12M(几百万记录)的数据,效率肯定会好很多。
看上去,貌似这两种有些矛盾,一个是要合并小文件,一个是要把大文件拆成小文件,这点正是重点需要关注的地方,根据实际情况,控制map数量需要遵循两个原则:使大数据量利用合适的map数;使单个map任务处理合适的数据量。
二、 控制hive任务的reduce数:
- Hive自己如何确定reduce数:
reduce个数的设定极大影响任务执行效率,不指定reduce个数的情况下,Hive会猜测确定一个reduce个数,基于以下两个设定:
hive.exec.reducers.bytes.per.reducer(每个reduce任务处理的数据量,默认为1000^3=1G)
hive.exec.reducers.max(每个任务最大的reduce数,默认为999)
计算reducer数的公式很简单N=min(参数2,总输入数据量/参数1)
即,如果reduce的输入(map的输出)总大小不超过1G,那么只会有一个reduce任务;
如:select pt,count(1) from popt_tbaccountcopy_mes where pt = ‘2012-07-04’ group by pt;
/group/p_sdo_data/p_sdo_data_etl/pt/popt_tbaccountcopy_mes/pt=2012-07-04 总大小为9G多,因此这句有10个reduce - 调整reduce个数方法一:
调整hive.exec.reducers.bytes.per.reducer参数的值;
set hive.exec.reducers.bytes.per.reducer=500000000; (500M)
select pt,count(1) from popt_tbaccountcopy_mes where pt = ‘2012-07-04’ group by pt; 这次有20个reduce - 调整reduce个数方法二;
set mapred.reduce.tasks = 15;
select pt,count(1) from popt_tbaccountcopy_mes where pt = ‘2012-07-04’ group by pt;这次有15个reduce - reduce个数并不是越多越好;
同map一样,启动和初始化reduce也会消耗时间和资源;
另外,有多少个reduce,就会有多少个输出文件,如果生成了很多个小文件,那么如果这些小文件作为下一个任务的输入,则也会出现小文件过多的问题; - 什么情况下只有一个reduce?
很多时候你会发现任务中不管数据量多大,不管你有没有设置调整reduce个数的参数,任务中一直都只有一个reduce任务;其实只有一个reduce任务的情况,除了数据量小于hive.exec.reducers.bytes.per.reducer参数值的情况外,还有以下原因:
a) 没有group by的汇总,比如把select pt,count(1) from popt_tbaccountcopy_mes where pt = '2012-07-04' group by pt;
写成select count(1) from popt_tbaccountcopy_mes where pt = '2012-07-04';
这点非常常见,希望大家尽量改写。
b) 用了Order by
c) 有笛卡尔积
通常这些情况下,除了找办法来变通和避免,我暂时没有什么好的办法,因为这些操作都是全局的,所以hadoop不得不用一个reduce去完成;
同样的,在设置reduce个数的时候也需要考虑这两个原则:使大数据量利用合适的reduce数;使单个reduce任务处理合适的数据量。
本文转载自:https://www.cnblogs.com/1130136248wlxk/articles/5352154.html
Hive设置map和reduce数量的更多相关文章
- Hadoop 中关于 map,reduce 数量设置
map和reduce是hadoop的核心功能,hadoop正是通过多个map和reduce的并行运行来实现任务的分布式并行计算,从这个观点来看,如果将map和reduce的数量设置为1,那么用户的任务 ...
- hive优化,控制map、reduce数量
一.调整hive作业中的map数 1.通常情况下,作业会通过input的目录产生一个或者多个map任务.主要的决定因素有: input的文件总个数,input的文件大小,集群设置的文件块大小(目前为1 ...
- Hadoop map和reduce数量估算
Hadoop在运行一个mapreduce job之前,需要估算这个job的maptask数和reducetask数.首先分析一下job的maptask数,当一个job提交时,jobclient首先分析 ...
- 如何确定 Hadoop map和reduce的个数--map和reduce数量之间的关系是什么?
1.map和reduce的数量过多会导致什么情况?2.Reduce可以通过什么设置来增加任务个数?3.一个task的map数量由谁来决定?4.一个task的reduce数量由谁来决定? 一般情况下,在 ...
- 如何确定Hadoop中map和reduce的个数--map和reduce数量之间的关系是什么?
一般情况下,在输入源是文件的时候,一个task的map数量由splitSize来决定的,那么splitSize是由以下几个来决定的 goalSize = totalSize / mapred.map. ...
- Etl之HiveSql调优(设置map reduce 的数量)
前言: 最近发现hivesql的执行速度特别慢,前面我们已经说明了left和union的优化,下面咱们分析一下增加或者减少reduce的数量来提升hsql的速度. 参考:http://www.cnbl ...
- hadoop中map和reduce的数量设置
hadoop中map和reduce的数量设置,有以下几种方式来设置 一.mapred-default.xml 这个文件包含主要的你的站点定制的Hadoop.尽管文件名以mapred开头,通过它可以控制 ...
- MapReduce剖析笔记之五:Map与Reduce任务分配过程
在上一节分析了TaskTracker和JobTracker之间通过周期的心跳消息获取任务分配结果的过程.中间留了一个问题,就是任务到底是怎么分配的.任务的分配自然是由JobTracker做出来的,具体 ...
- hadoop中map和reduce的数量设置问题
转载http://my.oschina.net/Chanthon/blog/150500 map和reduce是hadoop的核心功能,hadoop正是通过多个map和reduce的并行运行来实现任务 ...
- hive 的map数和reduce如何确定(转)
转自博客:https://blog.csdn.net/u013385925/article/details/78245011(没找到原创者,该博客也是转发) 一. 控制hive任务中的map ...
随机推荐
- C#多线程(9):多阶段并行线程
目录 前言 Barrier 类 属性和方法 示例 新的示例 说明 前言 这一篇,我们将学习用于实现并行任务.使得多个线程有序同步完成多个阶段的任务. 应用场景主要是控制 N 个线程(可随时增加或减少执 ...
- 李宏毅2022机器学习HW4 Speaker Identification下
Task Sample Baseline模型介绍 class Classifier(nn.Module): def __init__(self, d_model=80, n_spks=600, dro ...
- vscode编译多个C/CPP文件
修改vscode里面的tasks.json文件,下面是修改好的,参考 "args": [ "-fdiagnostics-color=always", " ...
- Java 小案列 this关键字使用+构造器 +方法+调用
1 package com.bytezero.thistest; 2 3 public class Boy 4 { 5 private String name; 6 private int age; ...
- Git 如何删除本地分支和远程分支
查看已有的本地及远程分支:git branch -a 删除远程分支(当前删除的是origin/dev分支):git push origin --delete dev 删除后,再次查看分支情况: ...
- 【学习笔记】 - 基础数据结构 :Link-Cut Tree(进阶篇)
前言 LCT没题写可以去写树剖和一些线段树合并的题练手 LCT 的概念 原本的树剖是对树进行剖分,剖分为重边和轻边 LCT则是对于树分为虚边和实边,特殊的,LCT可以没有虚边(例:银河英雄传说v2) ...
- 适用于AbpBoilerplate的RocketChat Api库
RocketChat 适用于AbpBoilerplate的RocketChat Api库 Rocket.Chat 是一个免费.开源.可扩展.高度可定制且安全的平台,可让您与团队进行交流和协作.共享文件 ...
- 利用Nginx正向代理实现局域网电脑访问外网
引言 在网络环境中,有时候我们需要让局域网内的电脑访问外网,但是由于网络策略或其他原因,直接访问外网是不可行的.这时候,可以借助 Nginx 来搭建一个正向代理服务器,实现局域网内电脑通过 Nginx ...
- SyntaxError: invalid property id(就是不支持ES6) (浏览器不支持对象...展开)
SyntaxError: invalid property id(就是不支持ES6) (浏览器不支持对象...展开) 火狐55以后支持
- eclipse错误之Errors occurred during the build. Errors running builder 'JavaScript Validator' on project
把JavaScript Validator去掉.去掉的方法是:选择一个项目--右键Properties--Builders(排第二)--点一下右侧会有四项--取消第一项"JavaScript ...