尽管ggez提供了很多相关特性的[demo](ggez/examples at master · ggez/ggez (github.com))供运行查看,但笔者第一次使用的时候还是有很多疑惑不解。经过仔细阅读demo代码并结合自己的实践,逐步了解了ggez在不同场景下的绘图方式,在此篇文章进行一定的总结,希望能够帮助到使用ggez的读者。

基本模式

在ggez官方文档中提到一个核心的功能就是基于wgpu图形API的硬件加速的2D渲染:

Hardware-accelerated 2D rendering built on the wgpu graphics API

ggez的基础绘制模式一般分为3步:

  1. 在每一次绘图事件回调中,通过图形上下文构造一个ggez封装的画布Canvas实例;
  2. 调用画布的draw方法,传入想要绘制的图形(例如一个矩形、一个圆)和相关绘图参数(位置、大小缩放等变换);
  3. 完成所有图像绘制后,调用画布的finish方法,向底层图形模块进行一次绘图提交,进而触发底层将最终渲染的图像呈现到画布区域上。

从代码的角度来看,大致如下:

struct MyState {}

impl EventHandler for MyState {
fn update(&mut self, _ctx: &mut Context) -> Result<(), GameError> {
Ok(())
} ///
/// 绘图
///
fn draw(&mut self, ctx: &mut Context) -> Result<(), GameError> {
// 1. 构造canvas实例
let mut canvas =
graphics::Canvas::from_frame(ctx, graphics::Color::from([1.0, 1.0, 1.0, 1.0])); // 2. 绘图
// ... ... // 3. finish
canvas.finish(ctx)?;
Ok(())
}
}

注释中步骤1、3的代码一般来说都很固定,读者根据注释应该很容易理解,这里不再赘述,接下来我们重点关注具体的图形绘制代码。

简单绘制一个矩形

当我们希望在窗口上左上角(10, 20)的位置绘制一个40 x 50的红色矩形时,我们可以通过编写如下的代码来完成:

    fn draw(&mut self, ctx: &mut Context) -> Result<(), GameError> {
// 1. 构造canvas实例
let mut canvas =
graphics::Canvas::from_frame(ctx, graphics::Color::from([1.0, 1.0, 1.0, 1.0])); // 2. 绘图
let draw_param = DrawParam::new()
.color(Color::new(1.0, 0.0, 0.0, 1.0))
.dest(Point2::from([10., 20.]))
.scale(Point2::from([40., 50.]));
canvas.draw(&Quad, draw_param); // 3. finish
canvas.finish(ctx)?;
Ok(())
}

本文将在接下来的内容中逐步介绍不同场景下的绘制,主要会更改关于上述代码中fn draw中的内容,其余基本不会改变,所以后续的代码片段没有特殊说明的情况下,均只会贴出fn draw中的内容。

我们首先构造一个DrawParam实例,通过它来描述我们最终期望绘制的图形的位置和大小。其中,.color()不难理解即配置颜色;dest指绘制的目标位置;最后,我们定义绘制的矩形的尺寸,但这里值得注意的是,API提供的是scale(中文译为“缩放”),并不是一个类似于size名称的API,对于初学者来说,这其实是有点反直觉的,别着急,我们稍后就来解释这个地方的概念。

接下来,调用draw时,我们第一参数传给的是一个Quad实例(的引用),第二个参数就是DrawParam数据。这个Quad是什么?通过查看源码文档,我们了解到Quad是ggez内置的一个最基础的1 x 1的Mesh(图形学中一般译为“网格”):

A Drawable unit type that maps to a simple 1x1 quad mesh.

一种可绘制的单元类型,映射到简单的1x1四方网格。

这里,我们不深究Quad这个1 x 1的mesh网格在计算机图形学中的意义,先简单将其理解为一个1 x 1的小方块。那么我们再回看之前提到的DrawParam::scale,该API指定的是Quad的缩放比例,也就是说,当我们代码中边写的是scale([40., 50.])的时候,实际上就是希望将一个原本1 x 1的矩形,使其宽扩大40倍,高扩大50倍。

为什么要使用缩放而不是直观的定义尺寸?这涉及到图形学中的变换,我们暂时不在本文中深究。

复杂图形

前面的Quad读者可以理解为只是ggez内置的一个极为简单的mesh“模板”,通过它我们能在画布指定位置绘制一个指定大小且纯色的矩形块。但实际上,我们在绘图的过程中必然不可能只会画这些简单的方块,或多或少都会画一些不同形状的几何,譬如圆、椭圆、三角形等,以及我们可能还需要为这些几何图形实现渐变,增加边框等效果。作为一款支持2D渲染的游戏框架,这部分的能力当然不会缺失。接下来我们继续介绍ggez在复杂图形的绘图方面的内容。

Mesh

在ggez中,提供了图形学知识体系中的Mesh数据结构,它是一份包含顶点数据缓存、索引数据缓存,并可以存储在GPU上的数据,并且通过文档我们了解到它的克隆复制成本很低。

Mesh data stored on the GPU as a vertex and index buffer. Cheap to clone.

关于Mesh的数据结构的含义,如果读者没有学习过计算机图形学,理解起来可能有困难。但在这里,我们可以暂时将它理解为想要通过GPU帮助我们绘图时,提供的一份较为底层的,GPU能直接使用的数据。比如,我们想要画一个矩形,从应用层面的角度,我们可能会定义一个数据结构叫Rect,它包含如下的信息:

  1. 位置(position)
  2. 宽高(width和height)
  3. 颜色(color)

但是GPU绘图的时候,我们需要将这些信息转换为GPU能够使用的,更为底层的数据,可能是四个顶点、颜色等数据。

那么,在ggez库中应该如何创建一份Mesh数据呢?以创建一个圆为例,通过阅读文档,我们可以使用Mesh::new_circle方法得到:

let circle_mesh = Mesh::new_circle(
ctx, // ctx: &mut Context
Fill(FillOptions::default()), // 填充模式
[50., 50.], // 圆心
25., // 半径
0.01, // 绘制圆弧曲线时多边形长度,越小越圆。
Color::from_rgb(255, 0, 0) // 颜色
)

该方法的入参也非常容易理解,就是一些绘制圆形的基本配置(半径、颜色等)。通过该方法构造一个Mesh后,我们就可以按照之前的方式,通过调用canvas.draw方法来绘制它:

let circle_mesh = Mesh::new_circle(
ctx,
Fill(FillOptions::default()),
[50., 50.],
25.,
0.001,
Color::from_rgb(255, 0, 0)
)?;
let draw_param = DrawParam::default()
.dest(Point2::from([100., 100.]))
.scale(Point2::from([1., 1.]))
.color(Color::new(0.0, 1.0, 0.0, 1.0));
canvas.draw(&circle_mesh, draw_param);
Ok(())

看到这段代码,细心的读者会立刻发现,我们已经定义了圆心的位置[50.0, 50.0],但是在构造DrawParam数据的时候,又定义了一个:.dest(Point2::from([100., 100.])),即我们希望将图形绘制到(100, 100)这个位置,很明显这二者是有冲突的。所以实际是什么结果呢?这里直接给出结论:图形的最终位置为图形的自身位置 “叠加” DrawParam的位置配置。所以,上述代码中最终圆所处的位置为(150, 150)坐标处。

再来讨论.scale(Point2::from([1., 1.]))代码的意义。这里我们知道是对图形进行尺寸缩放,在水平和垂直方向上均缩放1.0倍,也就是说不改变图形原有大小。如果我们希望对这个图形在水平方向(x轴)上放大2倍,垂直方向不变,就可以通过scale参数来定制:.scale(Point2::from([2., 1.]))

最后是 .color(Color::new(0.0, 1.0, 0.0, 1.0));。通过该API,我们定义了图形在绘制的时候使用绿色。很显然,和前面我们构造circle_mesh指定的红色(Color::from_rgb(255, 0, 0))是不一致的。这里最终的结果也是一种叠加,但是它们的叠加不是简单的加减,而是每一单色的值的相乘。也就是说,按照上面的代码,最终:Red=255 * 0.0 = 0Green = 0 * 1.0Blue = 0 * 1.0 = 0,运行以后,你会发现显示出来的是一个黑色圆形!如果你不配置DrawParamcolor,它默认是白色([1.0, 1.0, 1.0, 1.0]),此时,按照相乘的结果,就始终等于你图形定义的颜色了。

下图是一个综合上述讲解后的一个图形:

此外,DrawParam还有诸如rotation(旋转)offset(偏移)等配置,但是通过阅读底层代码,我们会发现DrawParam关于图形位置、缩放等数据核心其实是通过变换transform这个字段数据存储的:

/// DrawParam源码数据结构
pub struct DrawParam {
/// A portion of the drawable to clip, as a fraction of the whole image.
/// Defaults to the whole image (\[0.0, 0.0\] to \[1.0, 1.0\]) if omitted.
pub src: Rect,
/// Default: white.
pub color: Color,
/// Where to put the object.
pub transform: Transform, // <- 变换是核心
/// The Z coordinate of the draw.
pub z: ZIndex,
}

至于变换transform,如果学习过图形学、线代、向量等知识理解起来应该完全没有难度。

DrawParam的其他参数:pub src: Rectpub z: ZIndex,我们会在后面实践并解释。

目前为止,我们大致了解了图形绘制的两个部分:1、图形Mesh数据;2、DrawParam绘制定义数据。通过实践我们也了解了它们二者会有定义重叠的部分(例如位置、颜色等)以及叠加的方式。那么,当我们实际开发的时候,面对重叠的部分,究竟是通过配置Mesh本身还是DrawParam呢?要回答这个问题,我们首先要了解一份Mesh数据创建以后,它能做什么。通过阅读文档,我们发现Mesh数据在创建以后,仅仅是提供了一些克隆等API,也就是说,一旦Mesh数据构造完成,就无法对颜色、位置数据进行二次加工设置。而DrawParam数据很容易修改位置、大小、颜色等。也就是说,Mesh数据更偏向于静态绘图,而DrawParam主要负责可变化的绘制。如果在你的场景中,存在对一些图形按照每帧在不同的位置,呈现不同的颜色,那么笔者更建议创建一份图形的Mesh数据,然后在每帧绘制阶段通过临时构造DrawParam来制定当前帧的绘制情况。

举例来说,比如我想在窗体中绘制一个圆形,随着每帧从左到右移动,并且颜色随着从左到右从黑色变成红色:

为了达到这样的效果,最直观的做法是我们可以在每一次fn draw调用的时候,构造一份对应时刻的对应颜色的圆形的Mesh实例,并进行绘制。但是性能和资源利用更好的方式则是提前创建一份Mesh数据,并在每一次draw调用时,只改变DrawParam的参数即可:

MeshBuilder与MeshData

尽管比起之前的Qaud图形,我们现在已经能够绘制圆、三角形、多边形等更多种类的图形,但总的来说依然是一些常见的几何图形,对于实际的应用场景可能还远远不够。比如说,我们希望绘制一座房子,大概像下图这样:

我们将这个图形分解为三个部分:顶部使用一个棕色三角形作为房顶,房顶下方使用一个黄色矩形作为房屋体,在房屋体内部使用一个棕色的矩形作为门。按照之前的方式,我们首先构造mesh:

在这段代码中,我们首先在DrawHouseState结构体中增加了3个mesh数据字段:roof(屋顶)、house_body(房屋体)、door(门),在初始化阶段我们构造这三部分并存储起来。

接下来是绘制阶段代码:

    fn draw(&mut self, ctx: &mut Context) -> Result<(), GameError> {
// 1. 构造canvas实例
let mut canvas =
graphics::Canvas::from_frame(ctx, graphics::Color::from([1.0, 1.0, 1.0, 1.0])); // 2. draw调用了3次!
let draw_param = DrawParam::default()
.dest(Point2::from([100., 100.]))
canvas.draw(&self.roof, draw_param.clone());
canvas.draw(&self.house_body, draw_param.clone());
canvas.draw(&self.door, draw_param.clone()); // 3. finish
canvas.finish(ctx)?;
Ok(())
}

在绘制阶段,我们定义了一份DrawParam数据,同时分别对roofhouse_body以及door进行绘制。这段代码运行后的效果如下:

上述代码并不复杂,相信读者能够理解。但是这样的方式并不优雅,因为随着图形结构复杂度愈来越高,我们不可能随时关注一大堆的mesh实例;此外,这样的方式还有一个问题:为了绘制一个“房子”,我们调用了3次canvas.draw方法,会有性能上的问题(后续会量化)。

为了解决上述问题,ggez为我们提供了MeshBuilder。通过MeshBuilder,我们可以将多个mesh同时组合得到一份整体的mesh数据:

上面的代码,就是通过MeshBuilder依次构造了一个三角形、两个矩形。MeshBuilder最后的build方法会返回一个MeshData,请注意,这的MeshData结构体并不是前面的Mesh数据,而是Mesh结构体创建的来源数据,我们可以将MeshData实例传递给Mesh::from_data方法来创建Mesh。于是,此处我们只通过一个mesh就包含了整个房屋的图形数据。

最后,在渲染的时候,我们只需要调用canvas.draw一次:

fn draw(&mut self, ctx: &mut Context) -> Result<(), GameError> {
// 1. 构造canvas实例
let mut canvas =
graphics::Canvas::from_frame(ctx, graphics::Color::from([1.0, 1.0, 1.0, 1.0])); // 2. DrawParam和绘制一次
let draw_param = DrawParam::default()
.dest(Point2::from([100., 100.]));
canvas.draw(&self.house, draw_param.clone()); // 3. finish
canvas.finish(ctx)?;
Ok(())
}

InstanceArray

理论上来讲,MeshBuilder提供了将基础图形构成复杂图形以及方便对其进行整体操作的能力。但还有一个场景我们需要进一步讨论:如何绘制大量的图形?有的读者可能会说,那好办,在绘图的时候,一个for循环,多次调用canvas.draw绘制大量的图形:

上述的代码,我们通过两个for循环共计400次,依次在(0, 0)(0, 50)等位置绘制了50x50的正方形,将原来的房子绘制到对应区域。其中,缩放代码let scale = [SIZE / 100., SIZE / 100.];含义是我们的房子本身的尺寸是宽100,高100的尺寸,为了将其刚好会知道50x50的区域内,就需要按照比例缩放:

上述的代码最终运行的效果如下:

从代码逻辑的角度上讲使用for循环还算过得去,但是从性能层面上却有很大的问题。在这里为了可视化性能,我们使用ggez提供的API获得整个应用在运行过程中的fps均值,以此粗略地估算应用在每一次刷新时的性能情况:

impl EventHandler for DrawMultiHouseState {
fn update(&mut self, _ctx: &mut Context) -> Result<(), GameError> {
println!("game fps: {:?}", _ctx.time.fps());
Ok(())
} fn draw(&mut self, ctx: &mut Context) -> Result<(), GameError> {
// ... ...
}
}

上述的代码,我们在每一次update中,向控制台打印当前应用的fps值。可以看到在笔者的机器上,未经过编译优化的代码,将这400个小房子绘制到屏幕上,平均的fps在12左右:

对于游戏来说,这么简单的绘制400个图形fps就这么低显然是不应该的。那么这里的最佳实践是什么呢?答案是使用ggez提供的InstanceArray。该InstanceArray可以用来一次性存储大量的DrawParam数据。当我们要绘制400个房子的时候,实际上只需要构造400个DrawParam,将它们存放到InstanceArray中,这400个DrawParam,每一个的dest参数都不同,用来表示400个房子的不同位置。当我们需要进行绘制的时候,只需要调用一次canvas.draw_instanced_mesh方法,将InstanceArray作为第二个参数传入,即可在屏幕上呈现这400个房子,而不是循环400次,每次draw一次:

核心本质是每调用一次draw,就是数据从内存到GPU的一次数据传输。

通过使用InstanceArray,在同样的编译条件下,在本人60hz刷新率的机器上,绘制这400个图形的fps均值直接拉满60帧:

图片与文本绘制

实际上,图片与文本绘制的模式大体上和前面的图形绘制是保持一致的,都是首先创建一个被绘制的实例:

  • 图片:ggez::graphics::Image
  • 文本:ggez::graphics::Text

然后构造DrawParam实例或是存放DrawParamInstanceArray实例;最后调用canvas.drawcanvas.draw_instanced_mesh完成单个或批量绘制。接下来我们分别介绍一下ggez绘制图片数据和文本的具体实践。

图片绘制

如果是对矮人要塞或是CDDA大灾变等Tile-Based游戏深入了解过,就会发现,这些游戏的图形通常不是一张又一张的小图片存放起来,而是使用一张NxN规格的图片,把所有的图块统一铺在上面的:

例如,上图是矮人要塞的Spacefox图块集。你会发现游戏中所有的图形元素都按照16x16的大小统一集中到了这张图片上。那么在实际运行中是如何渲染的呢?游戏只需要将这一张图片加载到内存中,当想要渲染一个“包裹”(上图的第一行倒数第五个就是“包裹”)图形的时候,只需要提供区域偏移信息即可只绘制。

当然,我们先介绍基础图片绘制的方式,将上述一整张图片绘制到窗体上。首先,我们需要加载图片:

pub struct DrawImageState {
image: graphics::Image,
} impl DrawImageState {
pub fn new(ctx: &mut Context) -> GameResult<Self> {
/// 使用该路径前,请手动将"spacefox_16x16.png"复制到
/// 编译的生成的target/debug/resources目录下(没有请手动创建)
let image = graphics::Image::from_path(ctx, "/spacefox_16x16.png")?;
Ok(DrawImageState { image })
}
}

上述代码在State结构体中定义了一个image字段,用于存放ggez::graphics::Image实例;在初始化代码中,我们通过调用graphics::Image::from_path来读取图片spacefox_16x16.png默认情况下,图片的搜索目录会从可执行程序所在目录下的resources目录中查找。所以为了后续正常运行,我们先暂时手动将图片拷贝至对应目录:

关于ggez中的文件系统,后续会有文章详细讲解。

图片的加载和存储准备好以后,我们在绘图阶段编写如下代码:

   fn draw(&mut self, ctx: &mut Context) -> Result<(), GameError> {
// 1. 构造canvas实例
let mut canvas =
graphics::Canvas::from_frame(ctx, graphics::Color::from([1.0, 1.0, 1.0, 1.0])); // 2. 绘制图片到指定位置
let dest_point = Vec2::new(0.0, 0.0);
canvas.draw(&self.image, DrawParam::new().dest(dest_point)); // 3. finish
canvas.finish(ctx)?;
Ok(())
}

在实际运行以后,我们能够看到如下效果:

接下来,我们该如何将图片局部绘制到界面上?答案就是使用DrawParam的src参数来进行配置。首先,为了绘制上图第一行倒数第5个“包裹”图形,我们首先要确定它处于整张图片的哪个位置。已知图片尺寸为256x256像素,每一个图块尺寸为16x16,“包裹”图块处于水平第12个(基于0索引就是11),垂直第1个(基于0索引就是0)。所以,我们知道“包裹”所在的矩形区域为x = 11 * 16, y = 0 * 16, w = 16, h = 16

于是,我们创建对应区域数据,并作为参数传递给DrawParam:

    fn draw(&mut self, ctx: &mut Context) -> Result<(), GameError> {
/// ... ... // 2. 绘制图片到指定位置
const TILE_SIZE: f32 = 16.;
let src_rect = Rect::new(11. * TILE_SIZE, 0. * TILE_SIZE, TILE_SIZE, TILE_SIZE);
canvas.draw(&self.image, DrawParam::new().src(src_rect).dest(Vec2::new(0.0, 0.0))); /// ... ...
}

初看这段代码,应该很好理解,但在实际运行后笔者会发现显示的很有问题。其实,核心原因是ggez中关于DrawParam::src所需要的矩形数据是一个相对的数据,它的注释如下:

#[derive(Debug, Copy, Clone, PartialEq)]
pub struct DrawParam {
/// A portion of the drawable to clip, as a fraction of the whole image.
/// Defaults to the whole image (\[0.0, 0.0\] to \[1.0, 1.0\]) if omitted.
pub src: Rect,
/// ... ...
}

这段注释指的是:传入的Rect矩形的x、y、w、h都是相对于整张图片的相对值,其值范围是0.0到1.0之间的。回到我们的例子,“包裹”图块的对于整张图片的实际位置和尺寸数据是:x = 11 * 16, y = 0 * 16, w = 16, h = 16,那么x相对于整张图片是:(11 * 16) / 水平宽度256,y相对于图片水平是:(0 * 16) / 水平高度256,宽度w相对于整张图是16 / 256,高度h相对于整张图是16 / 256。所以我们需要做如下的转换处理才能正确绘制:

修正代码以后,我们能看到实际的运行效果:

文本绘制

使用ggez绘制文本,离不开两个重要的结构体:ggez::graphics::Textggez::graphics::TextFragment。其中,Text是被绘制的数据,而TextFragment主要用于定义一段文本中的局部结构,可以作为Text的参数:

上述的代码,我们首先使用Text::new("hello, world.")在画布上绘制文本:"hello, world.";然后,我们使用TextFragment构建了个两个片段:

  1. TextFragment::new("RED").color(Color::RED)
  2. TextFragment::new("BLUE").color(Color::BLUE)

然后通过它们构造了一个新的Text实例。这部分的含义是希望绘制的一段文本,"RED"使用红色绘制,"BLUE"使用蓝色绘制。

上述代码的最终效果如下:

写在最后

本文主要介绍了使用ggez的图形部分API进行一些基础图形、图片以及文本绘制。尽管ggez在官方提到图形渲染部分是基于wgpu的硬件加速的2D图形渲染:

  • Hardware-accelerated 2D rendering built on the wgpu graphics API

但由于ggez底层使用了wgpu,同时也通过一定方式暴露了wgpu的相关API,所以实际上我们依然可以进行利用wgpu进行3D图形绘制,不过这部分内容需要读者有相关3D图形渲染理论知识以及相关图形库API的使用经验,就不在本文中描述了,笔者可以通过官方样例代码一探究竟:

本章代码仓库地址:w4ngzhen/rs-game-dev (github.com)

cargo run --package chapter_02

基于Rust的Tile-Based游戏开发杂记(02)ggez绘图实操的更多相关文章

  1. 在基于TypeScript的LayaAir HTML5游戏开发中使用AMD

    在基于TypeScript的LayaAir HTML5游戏开发中使用AMD AMD AMD是"Asynchronous Module Definition"的缩写,意思就是&quo ...

  2. Salesforce 开发 | Salesforce与微信集成实操指南

    配置前须知 Salesforce通过试点对特定客户提供Lightning WeChat Messaging,该试点需要同意特定的条款.除非Salesforce宣布WeChat Messaging全面可 ...

  3. 基于HTML5的SLG游戏开发( 三):认识PureMVC

    在游戏开发中,对于一般网络游戏,由于需要多人协同开发,每个人负责不同的模块开发,为了减少耦合,需要用来一些MVC框架,减少模块之间的耦合.我们现在使用的mvc框架是pureMVC.pureMVC的官网 ...

  4. 基于HTML5的SLG游戏开发(序)

          2012年前后,HTML5游戏凭借跨平台.易移植.部署简单.节省成本等优点被炒的火热,经过一两年的快速发展,市场出现了一些成功地HTML5游戏产品,像磊友的<修仙三国>,神奇时 ...

  5. 自动化的基于TypeScript的HTML5游戏开发

    自动化的开发流程 在HTML5游戏开发或者说在Web客户端开发中,对项目代码进行修改之后,一般来说,需要手动刷新浏览器来查看代码修改后运行结果.这种手动的方式费时费力,降低了开发效率.另外,如果我们使 ...

  6. 转: Orz是一个基于Ogre思想的游戏开发架构

    Orz是一个基于Ogre思想的游戏开发架构,好的结构可以带来更多的功能.Orz和其他的商业以及非商业游戏开发架构不同.Orz更专著于开发者的感受,简化开发者工作.Orz可以用于集成其他Ogre3D之外 ...

  7. 基于Cocos2d-x-1.0.1的飞机大战游戏开发实例(中)

    接<基于Cocos2d-x-1.0.1的飞机大战游戏开发实例(上)> 三.代码分析 1.界面初始化 bool PlaneWarGame::init() { bool bRet = fals ...

  8. 转: 基于netty+ protobuf +spring + hibernate + jgroups开发的游戏服务端

    from: http://ybak.iteye.com/blog/1853335 基于netty+ protobuf +spring + hibernate + jgroups开发的游戏服务端 游戏服 ...

  9. 基于Intel x86 Android的RAD游戏开发

    zip文件还包含编译的"MonkeyGame-debug".可以在模拟器中运行的二进制文件.在"game.build"文件夹中有一个HTML5 build.在C ...

  10. 第 1 天|基于 AI 进行游戏开发:5 天创建一个农场游戏!

    欢迎使用 AI 进行游戏开发! 在本系列中,我们将使用各种 AI 工具,在 5 天内创建一个功能完备的农场游戏.到本系列结束时,你将了解到如何将多种 AI 工具整合到游戏开发流程中.本系列文章将向你展 ...

随机推荐

  1. .NET Core开发实战(第35课:MediatR:让领域事件处理更加优雅)--学习笔记

    35 | MediatR:让领域事件处理更加优雅 核心对象 IMediator INotification INotificationHandler 这两个与之前的 Request 的行为是不一样的, ...

  2. Embedding 模型部署及效果评测

    写在前面 最近大模型发展迅速,与之对应的向量化需求也被带动起来了,由此社区也衍生出很多模型,本文选几款,简单做下评测. 前置概念 为方便读者,先简单介绍几个概念. 概念1:Vector Embeddi ...

  3. ABC 306

    前三题过水. D \(dp[i][j]\) 表示吃完前 \(i\) 个菜,胃的状况为 \(j\)(\(0\) 是健康,\(1\) 是不好)所获得的最大美味值. E 暴力的平衡树.用 multiset ...

  4. Linux 中Yum命令使用方法

    Linux系统下常用yum安装命令详解   yum常用安装命令 使用yum安装和卸载软件,有个前提是yum安装的软件包都是rpm格式的. 1.安装killall命令yum install -y psm ...

  5. 【Unity3D】顶点和片元着色器

    1 前言 ​ 上文介绍了渲染管线.固定管线着色器和表面着色器,如下: 渲染管线 固定管线着色器一 固定管线着色器二 表面着色器 ​ 固定管线着色器通过命令方式实现光照和贴图等效果,表面着色器通过给 S ...

  6. PLSQL编译存储过程无响应

    解决方法如下: 1:查V$DB_OBJECT_CACHE SELECT * FROM V$DB_OBJECT_CACHE WHERE name='CRM_LASTCHGINFO_DAY' AND LO ...

  7. 使用xampp安装部署mantis

    快速教程请参考: 点击打开链接   http://download.csdn.net/detail/indexman/6830003 --------------------------- Dylan ...

  8. ORACLE cannot fetch plan for SQL_ID

    今天做SQL执行计划测试的时候,发现sqlplus无法正常打印执行计划,根据网上资料整理如下: ..... SYS@orcl> select *   2     from table(   3 ...

  9. 让 K8s 更简单!8款你不得不知的 AI 工具-Part 2

    在 part 1 中,我们探讨了目前比较流行的四种 OpenAI 开源工具.在今天的 part 2 中我们将探究另外三种不同的 OpenAI 开源工具并介绍一些与 Appilot 相关的内容. Kub ...

  10. python-获得特定程序的屏幕截图并保存为文件

    import win32gui import win32ui import win32con name = "test.txt - Notepad" hwnd = win32gui ...