1、概念

Kafka是最初由Linkedin公司开发,是一个分布式、支持分区的(partition)、多副本的(replica)分布式消息系统(kafka2.8.0版本之后接触了对zk的依赖,使用自己的kRaft做集群管理,新增内部主体@metadata存储元数据信息),它的最大的特性就是可以实时的处理大量数据以满足各种需求场景:比如基于hadoop的批处理系统、低延迟的实时系统、storm/Spark流式处理引擎,web/nginx日志、访问日志,消息服务等等,用scala语言编写,Linkedin于2010年贡献给了Apache基金会并成为顶级开源 项目。

类似产品还有 JBoss、MQ(ActiveMQ、RabbitMQ-erlang、RocketMQ-支持事务型消息)

2、kafka的特性

  • 高吞吐量、低延迟:kafka每秒可以处理几十万条消息,它的延迟最低只有几毫秒。(RecordAccumulate
  • 可扩展性:kafka集群支持热扩展
  • 持久性、可靠性:消息被持久化到本地磁盘,并且支持数据备份防止数据丢失
  • 容错性:允许集群中节点失败(若副本数量为n,则允许n-1个节点失败)
  • 高并发:支持数千个客户端同时读写

3、为什么要使用kafka

① 异步处理

② 服务解耦

③ 流量控制

4、kafka原理解析

消息是kafka的基本单位,消息是一串字节构成的。主要是key、value,key根据一定的策略,将消息体路由到不同的partition分区中。

kafka消息全部持久化到磁盘,其使用日志文件的方式来保存。Partition 以文件的形式存储在文件系统中

命名规则:<topic_name>-<partition_id>

Producer:消息⽣产者,向 Kafka Broker 发消息的客户端。

Consumer:消息消费者,从 Kafka Broker 取消息的客户端。Kafka支持持久化,生产者退出后,未消费的消息仍可被消费。

Consumer Group:消费者组(CG),消费者组内每个消费者负责消费不同分区的数据,提⾼消费能⼒。⼀个分区只能由组内⼀个消费者消费,消费者组之间互不影响。所有的消费者都属于某个消费者组,即消费者组是逻辑上的⼀个订阅者。

Broker:⼀台 Kafka 机器就是⼀个 Broker。⼀个集群(kafka cluster)由多个 Broker 组成。⼀个 Broker 可以容纳多个 Topic。

Controller:由zookeeper选举其中一个Broker产生。它的主要作用是在 Apache ZooKeeper 的帮助下管理和协调整个 Kafka 集群。Broker都在ZooKeeper的Controller节点上注册一个Watcher,当controller发生故障的时候,注册在其上的Watcher会被触发,竞选成为新的controller

Topic:可以理解为⼀个队列,Topic 将消息分类,⽣产者和消费者⾯向的是同⼀个 Topic。

Partition:为了实现扩展性,提⾼并发能⼒,⼀个⾮常⼤的 Topic 可以分布到多个 Broker上,⼀个 Topic 可以分为多个 Partition,同⼀个topic在不同的分区的数据是不重复的,每个 Partition 是⼀个有序的队列,其表现形式就是⼀个⼀个的⽂件夹。不同Partition可以部署在同一台机器上,但不建议这么做。

Replication:每⼀个分区都有多个副本,副本的作⽤是做备胎。当主分区(Leader)故障的时候会选择⼀个备胎(Follower)上位,成为Leader。在kafka中默认副本的最⼤数量是10个,且副本的数量不能⼤于Broker的数量,follower和leader绝对是在不同的机器,同⼀机器对同⼀个分区也只可能存放⼀个副本(包括⾃⼰)。

Message:每⼀条发送的消息主体。

Leader:每个分区多个副本的“主”副本,⽣产者发送数据的对象,以及消费者消费数据的对象,都是 Leader。

Follower:每个分区多个副本的“从”副本,使用发布订阅模式主动拉取Leader的数据(与redis不同),实时从 Leader 中同步数据,保持和 Leader 数据的同步。Leader 发⽣故障时,某个 Follower 还会成为新的 Leader。

Offset:消费者消费的位置信息,监控数据消费到什么位置,当消费者挂掉再重新恢复的时候,可以从消费位置继续消费。

ZooKeeper:Kafka 集群能够正常⼯作,需要依赖于 ZooKeeper,ZooKeeper 帮助 Kafka存储和管理集群信息。

High Level API 和Low Level API :高水平API,kafka本身定义的行为,屏蔽细节管理,使用方便;低水平API细节需要自己处理,较为灵活但是复杂。

kafka的高吞吐量

1,数据批量发送

kafka消息从producer发送出去时并不是一条一条发送的,而是先发送到一个消息批次(RecordAccumulate)中,然后由sender线程异步的将消息批次中的消息发到broker。这也是kafka吞吐量高的主要原因之一

消息发送 ---> 放入队列 ---> 申请内存 ---> 消费消息

之所以用到CopyOnWriteMap (采用写时复制),读不需要加锁,适用于读多写少的情况。而kafka只有当某个topic+partition下的第一条消息进行写入时才会写入数据,大部分情况都是读,符合读多写少的情况。

kafka的高可用

每个partition分区至少有一个副本,各个副本同步leader副本,一主多从的模式。

  • AR:分区中的所有 Replica 统称为 AR
  • ISR:所有与 Leader 副本保持一定程度同步的Replica(包括 Leader 副本在内)组成 ISR
  • OSR:与 Leader 副本同步滞后过多的 Replica 组成了 OSR

有效的分区副本是一个ISR集合,ISR集合保存的是有效的副本集合,如果发现某一个副本同步非常慢,则可以自动剔除。leader副本和fllower副本同步的时候会有延迟,但是只要未超过阈值都是可以接受的

ISR集合的存在只要是解决分区leader和follwer 同步复制和异步复制带来的问题

持同步不是指与Leader数据保持完全一致,只需在replica.lag.time.max.ms时间内与Leader保持有效连接

Follower周期性地向Leader发送FetchRequest请求,发送时间间隔配置在replica.fetch.wait.max.ms中,默认值为500ms

极端情况下,如果ISR集合内的所有节点都down了,有两种情况:

1,等待ISR集合中的某一个节点恢复并担任leader

2,选择所有节点(包含ISR之外的) 第一个恢复的担当leader

那么目前kafka的策略是第二点,这样会有一个问题就是ISR集合之外的节点可能数据不全,会和有效ISR集合内节点的数据有出入,造成数据不准确,但是保持了可用性

ACK机制

① 0:生产者无需等待服务端的任何确认,消息被添加到生产者套接字缓冲区后就视为已发送,因此acks=0不能保证服务端已收到消息

② 1:只要 Partition Leader 接收到消息而且写入本地磁盘了,就认为成功了,不管它其他的 Follower 有没有同步过去这条消息了

③ all:Leader将等待ISR中的所有副本确认后再做出应答,因此只要ISR中任何一个副本还存活着,这条应答过的消息就不会丢失

2,磁盘的顺序读写

3,数据压缩传输

4,topic划分多个partition分区,提高并发能力

kafka高性能

普通文件读取:

磁盘文件 --①-> 内核缓冲区 --②-> 用户缓存区 --③-> 内核socket缓存区 --④-> 网卡接口 ---> 消费者

零拷贝技术

磁盘文件 --①-> 内核缓冲区 --②(transferTo)-> 网卡接口 ---> 消费者

划重点: 零拷贝并不是不需要拷贝,而是减少拷贝的次数。

DMA

DMA技术使得 数据文件在各个层之间的传输,则可以直接绕过CPU。

linux系统中,零拷贝依赖于底层的sendfile() 方法实现,java中,FileChannel.transfeTo方法的底层实现了sendfile方法。

kafka消费方式

推拉结合:生产者push,消费组pull

① enable.auto.commit 是否自动提交自己的offset值;默认值时true

② auto.commit.interval.ms 自动提交时长间隔;默认值时5000 ms

③ consumer.commitSync(); offset提交命令;

at most onece:最多消费一次,存在数据丢失的情况

at least once:最少消费一次,保证数据不丢,存在重复消费 (kafka默认消费方式)

exactly once:精确一次,无论何种情况下,消息只会消费一次 (依赖于外部存储系统协调)

最多一次、最少一次的主要区别:是消费消息再记录offset还是先记录offset再消费消息。

5、kafka消息丢失问题

场景:

消费端从leader副本poll了一批消息消费之后,leader副本挂机了,之后从ISR选举出的副本中的消息可能是比leader少了的。如果此时consumer处理完这批数据提交offset,消费端会丢失这部分新产生而在kafka中实实在在保存着的数据。

解决方式:

HW(high Watermark)高水位

它标识了一个特定的消息偏移量(offset),消费者只能拉取到这个 offset 之前的消息。

分区 ISR 集合中的每个副本都会维护自身的 LEO(Log End Offset):俗称日志末端位移,而 ISR 集合中最小的 LEO 即为分区的 HW,对消费者而言只能消费 HW 之前的消息。

1.kafka的消费组如果需要增加组员,最多增加到和partition数量一致,否则超过的组员只会占用资源而没有作用

2.Raft协议是啥? 比较流行的分布式协议算法(leader选举、日志复制)

3.分区设置:一天一亿消息大致分为8个分区资源可满足。

参考: https://www.jianshu.com/p/6cbe28a44543

作者:京东零售 张继

来源:京东云开发者社区 转载请注明来源

Kafka核心逻辑介绍的更多相关文章

  1. 高性能消息队列 CKafka 核心原理介绍(上)

    欢迎大家前往腾讯云技术社区,获取更多腾讯海量技术实践干货哦~ 作者:闫燕飞 1.背景 Ckafka是基础架构部开发的高性能.高可用消息中间件,其主要用于消息传输.网站活动追踪.运营监控.日志聚合.流式 ...

  2. Unity3D核心类介绍

    脚本介绍与Unity核心类介绍 -------------------------------------------------------------------------------- 脚本介 ...

  3. Kafka核心概念(转)

    转自:https://blog.csdn.net/liyiming2017/article/details/82805479 1.Kafka集群结构 实际上kafka的结构图是有些区别的,现在我们看下 ...

  4. _00017 Kafka的体系结构介绍以及Kafka入门案例(0基础案例+Java API的使用)

    博文作者:妳那伊抹微笑 itdog8 地址链接 : http://www.itdog8.com(个人链接) 博客地址:http://blog.csdn.net/u012185296 博文标题:_000 ...

  5. Kafka学习(三)-------- Kafka核心之Cosumer

    了解了什么是kafka( https://www.cnblogs.com/tree1123/p/11226880.html)以后 学习核心api之消费者,kafka的消费者经过几次版本变化,特别容易混 ...

  6. kafka核心原理总结

    新霸哥发现在新的技术发展时代,消息中间件也越来越受重视,很多的企业在招聘的过程中着重强调能够熟练使用消息中间件,所有做为一个软件开发爱好者,新霸哥在此提醒广大的软件开发朋友有时间多学习. 消息中间件利 ...

  7. 第1节 kafka消息队列:2、kafka的架构介绍以及基本组件模型介绍

    3.kafka的架构模型 1.producer:消息的生产者,主要是用于生产消息的.主要是接入一些外部的数据源,从外部获取数据,比如说我们可以从flume获取数据,还可以通过ftp传入数据等,还可以通 ...

  8. 深入理解Kafka核心设计及原理(三):消费者

    转载请注明出处:https://www.cnblogs.com/zjdxr-up/p/16114877.html 深入理解Kafka核心设计及原理(一):初识Kafka 深入理解Kafka核心设计及原 ...

  9. 深入理解Kafka核心设计及原理(四):主题管理

    转载请注明出处:https://www.cnblogs.com/zjdxr-up/p/16124354.html 目录: 4.1创建主题 4.2 优先副本的选举 4.3 分区重分配 4.4 如何选择合 ...

  10. APP自动化框架LazyAndroid使用手册(3)--核心API介绍

    作者:黄书力 概述 在前一篇博文中,简要介绍了一款安卓UI自动化测试框架LazyAndroid (http://blog.csdn.net/kaka1121/article/details/53204 ...

随机推荐

  1. java获取服务器ip地址的工具类

    参考: https://www.cnblogs.com/raphael5200/p/5996464.html 代码实现 import lombok.extern.slf4j.Slf4j; import ...

  2. 2023-09-16:用go语言,给你一个整数 n 和一个在范围 [0, n - 1] 以内的整数 p , 它们表示一个长度为 n 且下标从 0 开始的数组 arr , 数组中除了下标为 p 处是 1

    2023-09-16:用go语言,给你一个整数 n 和一个在范围 [0, n - 1] 以内的整数 p , 它们表示一个长度为 n 且下标从 0 开始的数组 arr , 数组中除了下标为 p 处是 1 ...

  3. 「luogu - P4313」文理分科 Mincut

    link. Pretty nice practice for the min-cut trick. Starting out we eliminate the constraint that if f ...

  4. Go with Protobuf

    原文在这里. 本教程为 Go 程序员提供了使用Protocol buffer的基本介绍. 本教程使用proto3向 Go 程序员介绍如何使用 protobuf.通过创建一个简单的示例应用程序,它向你展 ...

  5. LogicFlow 是一款流程图编辑框架

    简体中文 | English LogicFlow 是一款流程图编辑框架,提供了一系列流程图交互.编辑所必需的功能和简单灵活的节点自定义.插件等拓展机制,方便我们快速在业务系统内满足类流程图的需求. 特 ...

  6. 使用 Helm 管理应用的一些 Tips

    背景 Helm 是一个 Kubernetes 的包管理工具,有点类似于 Mac 上的 brew,Python 中的 PIP:可以很方便的帮我们直接在 kubernetes 中安装某个应用. 比如我们可 ...

  7. Centos7下创建centos-home逻辑分区

    1备份要挂载的文件夹 查看home文件夹有无文件,如有文件一定要记得备份 2创建逻辑分区 2.1查看已有逻辑分区 2.2查看磁盘分区情况 2.3查看磁盘PV 2.4创建逻辑分区 lvcreate -n ...

  8. C#计数排序算法

    前言 计数排序是一种非比较性的排序算法,适用于排序一定范围内的整数.它的基本思想是通过统计每个元素的出现次数,然后根据元素的大小依次输出排序结果. 实现原理 首先找出待排序数组中的最大值max和最小值 ...

  9. We Need More Bosses 题解

    We Need More Bosses 题目大意 给定一张图,找到两个点,使得这两个点之间的所有路径必须经过的边最多. 思路分析 我们先来思考一下如果已知两个点,怎么求两个点之间必须经过的边的数量. ...

  10. 双数组字典树 (Double-array Trie) -- 代码 + 图文,看不懂你来打我

    目录 Trie 字典树 双数组Trie树 构建 字符编码 计算规则 构建 Base Array.Check Array 处理字典首字 处理字典二层字 处理字典三层字 处理字典四层字 叶子节点处理 核心 ...