【scipy 基础】--聚类
物以类聚,聚类算法使用最优化的算法来计算数据点之间的距离,并将它们分组到最近的簇中。
Scipy
的聚类模块中,进一步分为两个聚类子模块:
vq
(vector quantization):提供了一种基于向量量化的聚类算法。
vq模块支持多种向量量化算法,包括K-means
、GMM
(高斯混合模型)和WAVG
(均匀分布)。
hierarchy
:提供了一种基于层次聚类的聚类算法。
hierarchy模块支持多种层次聚类算法,包括ward
、elbow
和centroid
。
总之,Scipy
中的vq
和hierarchy
模块都提供了一种基于最小化平方误差的聚类算法,
它们可以帮助我们快速地对大型数据集进行分组,从而更好地理解数据的分布和模式。
1. vq 聚类
vq
聚类算法的原理是将数据点映射到一组称为“超空间”的低维向量空间中,然后将它们分组到最近的簇中。
首先,我们创建一些测试数据:(创建3个类别的测试数据)
import numpy as np
import matplotlib.pyplot as plt
data1 = np.random.randint(0, 30, (100, 3))
data2 = np.random.randint(30, 60, (100, 3))
data3 = np.random.randint(60, 100, (100, 3))
data = np.concatenate([data1, data2, data3])
fig, ax = plt.subplots(subplot_kw={"projection": "3d"})
ax.scatter(data[:, 0], data[:, 1], data[:, 2])
plt.show()
data1
,data2
,data3
分布在3个区域,
每个数据集有100条数据,每条数据有3个属性。
1.1. 白化数据
聚类之前,一般会对数据进行白化,所谓白化数据,是指将数据集中的每个特征或每个样本的值都统一为同一个范围。
这样做的目的是为了消除特征之间的量纲和数值大小差异,使得不同特征具有相似的重要性,从而更容易进行聚类算法。
在聚类之前对数据进行白化处理也被称为预处理阶段。
from scipy.cluster.vq import whiten
# 白化数据
normal_data = whiten(data)
# 绘制白化后的数据
fig, ax = plt.subplots(subplot_kw={"projection": "3d"})
ax.scatter(normal_data[:, 0], normal_data[:, 1], normal_data[:, 2])
plt.show()
从图中可以看出,数据的分布情况没有改变,只是数据的范围从0~100
变成0.0~3.5
。
这就是白化的效果。
1.2. K-means
白化之后,就可以用K-meas方法来进行聚类运算了。scipy
的vq
模块中有2个聚类函数:kmeans
和kmeans2
。
kmeans
函数最少只要传入两个参数即可:
- 需要聚类的数据,也就是上一步白化的数据
- 聚类的数目
返回值有2部分:
- 各个聚类的中心点
- 各个点距离聚类中心点的欧式距离的平均值
from scipy.cluster.vq import kmeans
center_points, distortion = kmeans(normal_data, 3)
print(center_points)
print(distortion)
# 运行结果
[[1.632802 1.56429847 1.51635413]
[0.48357948 0.55988559 0.48842058]
[2.81305235 2.84443275 2.78072325]]
0.5675874109728244
把三个聚类点绘制在图中来看更加清楚:
fig, ax = plt.subplots(subplot_kw={"projection": "3d"})
ax.scatter(normal_data[:, 0],
normal_data[:, 1],
normal_data[:, 2])
ax.scatter(
center_points[:, 0],
center_points[:, 1],
center_points[:, 2],
color="r",
marker="^",
linewidths=5,
)
plt.show()
图中3个红色的点就是聚类的中心点。
1.3. K-means2
kmeans2
函数使用起来和kmeans
类似,但是返回值有区别,kmeans2
的返回的是:
- 聚类的中心点坐标
- 每个聚类中所有点的索引
from scipy.cluster.vq import kmeans2
center_points, labels = kmeans2(normal_data, 3)
print(center_points)
print(labels)
# 运行结果
[[2.81305235 2.84443275 2.78072325]
[1.632802 1.56429847 1.51635413]
[0.48357948 0.55988559 0.48842058]]
[2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
... ...
0 0 0 0]
可以看出,计算出的聚类中心点center_points
和kmeans
一样(只是顺序不一样),labels
有0,1,2
三种值,代表normal_data
中每个点属于哪个分类。
kmeans2
除了返回了聚类中心点,还有每个数据点属于哪个聚类的信息,
所以我们绘图时,可以将属于不同聚类的点标记不同的颜色。
fig, ax = plt.subplots(subplot_kw={"projection": "3d"})
arr_data = [[], [], []]
for idx, nd in enumerate(normal_data):
arr_data[labels[idx]].append(nd)
data = np.array(arr_data[0])
ax.scatter(data[:, 0], data[:, 1], data[:, 2], color='lightblue')
data = np.array(arr_data[1])
ax.scatter(data[:, 0], data[:, 1], data[:, 2], color='lightgreen')
data = np.array(arr_data[2])
ax.scatter(data[:, 0], data[:, 1], data[:, 2], color='lightyellow')
ax.scatter(
center_points[:, 0],
center_points[:, 1],
center_points[:, 2],
color="r",
marker="^",
linewidths=5,
)
plt.show()
2. hierarchy 聚类
hierarchy
聚类算法的步骤比较简单:
- 将每个样本视为一个簇
- 计算各个簇之间的距离,将距离最近的两个簇合并为一个簇
- 重复第二个步骤,直至到最后一个簇
from scipy.cluster.hierarchy import ward, fcluster, dendrogram
from scipy.spatial.distance import pdist
# 计算样本数据之间的距离
# normal_data是之前白化之后的数据
dist = pdist(normal_data)
# 在距离上创建Ward连接矩阵
Z = ward(dist)
# 层次聚类之后的平面聚类
S = fcluster(Z, t=0.9, criterion='distance')
print(S)
# 运行结果
[20 26 23 18 18 22 18 28 21 22 28 26 27 27 20 17 23 20 26 23 17 25 20 22
... ...
5 13 3 4 2 9 9 13 13 8 11 6]
返回的S
中有300个数据,和normal_data
中的数据一样多,S
中数值接近的点,分类越接近。
从数值看聚类结果不那么明显,scipy
的层次聚类提供了一个dendrogram
方法,内置了matpltlib
的功能,
可以把层次聚类的结果用图形展示出来。
P = dendrogram(Z, no_labels=True)
plt.show()
从这个图可以看出每个数据分别属于哪个层次的聚类。
最底层的叶子节点就是normal_datad
中的各个数据,这些数据的索引信息可以从 P
中获取。
# P是一个字典,包含聚类之后的信息
# key=ivl 是图中最底层叶子节点在 normal_data 中的索引
print(P["ivl"])
# 运行结果
['236', '269', '244', ... ... '181', '175', '156', '157']
3. 总结
聚类分析可以帮助我们发现数据集中的内在结构、模式和相似性,从而更好地理解数据。
使用Scipy
库,可以帮助我们高效的完成数据的聚类分析,而不用去具体了解聚类分析算法的实现方式。
【scipy 基础】--聚类的更多相关文章
- SciPy 基础功能
章节 SciPy 介绍 SciPy 安装 SciPy 基础功能 SciPy 特殊函数 SciPy k均值聚类 SciPy 常量 SciPy fftpack(傅里叶变换) SciPy 积分 SciPy ...
- 使用scipy进行聚类
近期做图像的时候,突然有个idea,须要进行聚类,事实上算法非常easy,可是当时非常急.就直接使用了scipy的cluster. 使用起来事实上非常easy,可是中文的文章非常少,所以就简单的介绍一 ...
- scipy cluster聚类 ---Python3
官方文档: https://docs.scipy.org/doc/scipy/reference/cluster.vq.html
- SciPy k均值聚类
章节 SciPy 介绍 SciPy 安装 SciPy 基础功能 SciPy 特殊函数 SciPy k均值聚类 SciPy 常量 SciPy fftpack(傅里叶变换) SciPy 积分 SciPy ...
- python-数据处理的包Numpy,scipy,pandas,matplotlib
一,NumPy包(numeric python,数值计算) 该包主要包含了存储单一数据类型的ndarry对象的多维数组和处理数组能力的函数ufunc对象.是其它包数据类型的基础.只能处理简单的数据分析 ...
- SciPy 信号处理
章节 SciPy 介绍 SciPy 安装 SciPy 基础功能 SciPy 特殊函数 SciPy k均值聚类 SciPy 常量 SciPy fftpack(傅里叶变换) SciPy 积分 SciPy ...
- SciPy 统计
章节 SciPy 介绍 SciPy 安装 SciPy 基础功能 SciPy 特殊函数 SciPy k均值聚类 SciPy 常量 SciPy fftpack(傅里叶变换) SciPy 积分 SciPy ...
- SciPy 线性代数
章节 SciPy 介绍 SciPy 安装 SciPy 基础功能 SciPy 特殊函数 SciPy k均值聚类 SciPy 常量 SciPy fftpack(傅里叶变换) SciPy 积分 SciPy ...
- SciPy 图像处理
章节 SciPy 介绍 SciPy 安装 SciPy 基础功能 SciPy 特殊函数 SciPy k均值聚类 SciPy 常量 SciPy fftpack(傅里叶变换) SciPy 积分 SciPy ...
- SciPy 优化
章节 SciPy 介绍 SciPy 安装 SciPy 基础功能 SciPy 特殊函数 SciPy k均值聚类 SciPy 常量 SciPy fftpack(傅里叶变换) SciPy 积分 SciPy ...
随机推荐
- python学习笔记:第九章异常
1.1 异常是什么 python使用异常对象来表示异常状态,并在遇到错误时引发异常.异常对象未被处理,程序将终止并显示一条错误信息. 我们可以通过各种方法引发和捕获错误,并采取对应措施. 1.2 将& ...
- Description Resource Path Location
解决办法 在项目上右键属性Properties,属性列表中选择Project Facets,在打开的Project Facets页面中的Java下拉列表中,选择相应版本. 有可能是java1.6 改成 ...
- CSP-S复习列表
DP:序列,区间,背包,多维,状压,树型 优化:滚动,单调性,树状数组 数据结构:栈,队,链,deque,priority_queue,vector,set,map 树状数组,分块思想 前缀和,差分思 ...
- FPGA按键消抖
简介 按键 按键是输入设备,一般来说,按键在没有按下的时候是高电平:当按键按下的时候,为低电平. 在DE2-70 User Manual中 Each switch provides a high lo ...
- python教程 入门学习笔记 第1天 初识python python语言环境安装 python编写器
初识python 一.python语言简介: 1.起源:1989年由荷兰的前谷歌程序员吉多.范罗苏姆(龟叔)创造,python的命名来源于英国电视喜剧Monty Python's Flying Cir ...
- uniapp开发H5,分享链接到微信好友,显示标题和缩略图
本文档介绍了如何在UniApp开发中实现将链接分享到微信好友,并确保在分享时显示标题和缩略图的方法. 背景 第一次用uniapp开发H5页面,发现分享给微信好友的链接,不显示标题和缩略图 步骤一:安装 ...
- 基于md5加密的模拟管理员登录系统
import os import pandas as pd def md5(string:str=''): import hashlib md5 = hashlib.md5() ...
- VMware三种连接模式的区别
安装了vm软件后,该软件会虚拟出两张虚拟网卡vmnet1和vmnet8 网卡在控制面板->网络和internet->更改适配器设置 三种网络连接模式: 桥接模式:使用主机的无线网卡或者有线 ...
- 大怨种的pwn的wp
0x01 pwnable_echo1 军训几天加暑假的活 from pwn import * context(os='linux', arch='amd64', log_level='debug') ...
- SElinux 导致 Keepalived 检测脚本无法执行
哈喽大家好,我是咸鱼 今天我们来看一个关于 Keepalived 检测脚本无法执行的问题 一位粉丝后台私信我,说他部署的 keepalived 集群 vrrp_script 模块中的脚本执行失败了,但 ...