5分钟明白LangChain 的输出解析器和链
本文介绍 LangChain 的输出解析器OutputParser
的使用,和基于LangChain的LCEL
构建链
。
1. 输出解析器OutputParser
1.1、为什么需要OutputParser
常规的使用LangChain构建LLM应用的流程是:Prompt 输入、调用LLM 、LLM输出。有时候我们期望LLM给到的数据是格式化的数据,方便做后续的处理。
这时就需要在Prompt里设置好要求,然后LLM会在输出内容后,再将内容传给输出解析器,输出解析器会解析成我们预期的格式。
1.2、代码实践
调用系统自带的输出解析器
示例1:将调用 LLM 的结果,解析为逗号分隔的列表。比如询问某个城市有N个景点。
from langchain_openai import ChatOpenAI
from langchain.output_parsers import CommaSeparatedListOutputParser
from langchain.prompts import ChatPromptTemplate
prompt = ChatPromptTemplate.from_messages([
("system", "{parser_instructions}"),
("human", "列出{cityName}的{viewPointNum}个著名景点。")
])
output_parser = CommaSeparatedListOutputParser()
parser_instructions = output_parser.get_format_instructions()
# 查看解析器的指令内容
print(parser_instructions)
final_prompt = prompt.invoke({"cityName": "南京", "viewPointNum": 3, "parser_instructions": parser_instructions})
model = ChatOpenAI(model="gpt-3.5-turbo",
openai_api_key="sk-xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx",
openai_api_base="https://api.aigc369.com/v1")
response = model.invoke(final_prompt)
print(response.content)
ret = output_parser.invoke(response)
print(ret)
自定义格式的输出解析器
除了使用自带的一些输出格式,还可以使用自定义的输出格式。使用步骤如下:
- 定义数据结构类,继承
pydantic
的BaseModel
- 使用输出解析器
PydanticOutputParser
- 后续是常规操作:生成prompt、调用LLM执行、将输出按照Parser解析
示例2:比如给LLM一段书籍的介绍,让他按照指定的格式总结输出。
from typing import List
from langchain.output_parsers import PydanticOutputParser
from langchain.prompts import ChatPromptTemplate
from langchain.schema import HumanMessage
from langchain_core.pydantic_v1 import BaseModel, Field
from langchain_openai import ChatOpenAI
class BookInfo(BaseModel):
book_name: str = Field(description="书籍的名字")
author_name: str = Field(description="书籍的作者")
genres: List[str] = Field(description="书籍的体裁")
output_parser = PydanticOutputParser(pydantic_object=BookInfo)
# 查看输出解析器的内容,会被输出成json格式
print(output_parser.get_format_instructions())
prompt = ChatPromptTemplate.from_messages([
("system", "{parser_instructions} 你输出的结果请使用中文。"),
("human", "请你帮我从书籍的概述中,提取书名、作者,以及书籍的体裁。书籍概述会被三个#符号包围。\n###{book_introduction}###")
])
book_introduction = """
《朝花夕拾》原名《旧事重提》,是现代文学家鲁迅的散文集,收录鲁迅于1926年创作的10篇回忆性散文, [1]1928年由北京未名社出版,现编入《鲁迅全集》第2卷。
此文集作为“回忆的记事”,多侧面地反映了作者鲁迅青少年时期的生活,形象地反映了他的性格和志趣的形成经过。前七篇反映他童年时代在绍兴的家庭和私塾中的生活情景,后三篇叙述他从家乡到南京,又到日本留学,然后回国教书的经历;揭露了半殖民地半封建社会种种丑恶的不合理现象,同时反映了有抱负的青年知识分子在旧中国茫茫黑夜中,不畏艰险,寻找光明的困难历程,以及抒发了作者对往日亲友、师长的怀念之情 [2]。
文集以记事为主,饱含着浓烈的抒情气息,往往又夹以议论,做到了抒情、叙事和议论融为一体,优美和谐,朴实感人。作品富有诗情画意,又不时穿插着幽默和讽喻;形象生动,格调明朗,有强烈的感染力。
"""
model = ChatOpenAI(model="gpt-3.5-turbo",
openai_api_key="sk-BuQK7SGbqCZP2i2z7fF267AeD0004eF095AbC78d2f79E019",
openai_api_base="https://api.aigc369.com/v1")
final_prompt = prompt.invoke({"book_introduction": book_introduction,
"parser_instructions": output_parser.get_format_instructions()})
response = model.invoke(final_prompt)
print(response.content)
result = output_parser.invoke(response)
print(result)
2. 利用LCEL构建链
2.1、LCEL是啥
LCEL是LangChain 表达式语言(LangChain Expression Language)的简称。使用LCEL可以快速将各种链
组合到一起,那链
又是啥呢?
在LangChain里只要实现了Runnable
接口,并且有invoke
方法,都可以成为链
。实现了Runnable
接口的类,可以拿上一个链的输出作为自己的输入。
比如以上代码的ChatPromptTemplate
、ChatOpenAI
、PydanticOutputParser
等,都实现了Runnable
接口,且都有invoke
方法。
LCEL提供了多种方式将链组合起来,比如使用管道符
|
,这种方式既方便书写,表达力也很强劲。
2.2、使用区别
不使用LCEL
不使用LCEL时,代码写起来是,各种invoke
满天飞。比如这样:
final_prompt = prompt.invoke({"book_introduction": book_introduction,
"parser_instructions": output_parser.get_format_instructions()})
response = model.invoke(final_prompt)
result = output_parser.invoke(response)
使用LCEL
使用LCEL时,代码简洁,并且表达力强许多,比如这样:
chain = prompt | model | output_parser
ret = chain.invoke({"book_introduction": book_introduction,
"parser_instructions": output_parser.get_format_instructions()})
3、总结
本文主要聊了LangChain的输出解析器 和 使用LCEL构建链,希望对你有帮助!
======>>>>>> 关于我 <<<<<<======
本篇完结!欢迎点赞 关注 收藏!!!
原文链接:https://mp.weixin.qq.com/s/VapTZbsDDPzfu9eqMzeToQ、http://www.mangod.top/articles/2024/05/27/1716768844603.html
5分钟明白LangChain 的输出解析器和链的更多相关文章
- python爬虫主要就是五个模块:爬虫启动入口模块,URL管理器存放已经爬虫的URL和待爬虫URL列表,html下载器,html解析器,html输出器 同时可以掌握到urllib2的使用、bs4(BeautifulSoup)页面解析器、re正则表达式、urlparse、python基础知识回顾(set集合操作)等相关内容。
本次python爬虫百步百科,里面详细分析了爬虫的步骤,对每一步代码都有详细的注释说明,可通过本案例掌握python爬虫的特点: 1.爬虫调度入口(crawler_main.py) # coding: ...
- springmvc中的页面解析器ViewResolver不起作用,变量输出字符串的解决方案
<web-app xmlns:web="http://xmlns.jcp.org/xml/ns/javaee"> <servlet> <servlet ...
- boost之词法解析器spirit
摘要:解析器就是编译原理中的语言的词法分析器,可以按照文法规则提取字符或者单词.功能:接受扫描器的输入,并根据语法规则对输入流进行匹配,匹配成功后执行语义动作,进行输入数据的处理. C++ 程序员需要 ...
- configparser_配置解析器
configparser:配置解析器 import configparser config = configparser.ConfigParser() #配置文件 config[', 'Compres ...
- Python 之父再发文:构建一个 PEG 解析器
花下猫语: Python 之父在 Medium 上开了博客,现在写了两篇文章,本文是第二篇的译文.前一篇的译文 在此 ,宣布了将要用 PEG 解析器来替换当前的 pgen 解析器. 本文主要介绍了构建 ...
- OO第四单元——基于UML的UML解析器总结&OO课程总结
OO第四单元--基于UML的UML解析器总结&OO课程总结 前言:一学期愉快(痛苦)的OO课程学习结束了,OO几个单元作业都各有特色,实验也各有特色,仔细回味起来,不再是单纯的敲代码(但自己还 ...
- 学习SpringMVC——说说视图解析器
各位前排的,后排的,都不要走,咱趁热打铁,就这一股劲我们今天来说说spring mvc的视图解析器(不要抢,都有位子~~~) 相信大家在昨天那篇如何获取请求参数篇中都已经领略到了spring mvc注 ...
- pull解析器: 反序列化与序列化
pull解析器:反序列化 读取xml文件来获取一个对象的数据 import java.io.FileInputStream; import java.io.IOException; import ja ...
- tinyxml一个优秀的C++ XML解析器
读取和设置xml配置文件是最常用的操作,试用了几个C++的XML解析器,个人感觉TinyXML是使用起来最舒服的,因为它的API接口和Java的十分类似,面向对象性很好. TinyXML是一个开源的解 ...
- 自己动手写中文分词解析器完整教程,并对出现的问题进行探讨和解决(附完整c#代码和相关dll文件、txt文件下载)
中文分词插件很多,当然都有各自的优缺点,近日刚接触自然语言处理这方面的,初步体验中文分词. 首先感谢harry.guo楼主提供的学习资源,博文链接http://www.cnblogs.com/harr ...
随机推荐
- SQL中使用年月日来进行分组
SQL按年月日进行分组 select count(project_name), create_at from table_a group by date_format(create_at, '%Y%m ...
- LTV预估的一些思考
什么是LTV 用户生命周期价值(Lifetime Value, LTV)是一个非常重要的指标,定义为单个用户在某种生命周期内(i.e. 从开始使用产品到停止使用期间) 为产品创造的总价值. 比如GMV ...
- scala 生成指定日期范围的list
可以通过scala中的流处理,生成指定范围内的日期list import java.time.LocalDate def dateStream(fromDt:LocalDate):Stream[Loc ...
- BI、OLAP、多维分析、CUBE 这几个词是什么关系?
这些词我们在建设分析型应用时经常会听到,这几个词也经常被弄混,这里来梳理一下. BIBI 是 Business Intelligence(商业智能)的缩写,是指企业利用已有数据进行数据分析从而指导商业 ...
- formdata 的前世今生
前言 为什么会产生formdata这东西呢? 看下简介: FormData 接口提供了一种表示表单数据的键值对的构造方式,经过它的数据可以使用 XMLHttpRequest.send() 方法送出,本 ...
- 第壹課-Install:Mirth Connect在Win10下的安装步骤
1.安装JDK,推荐安装JDK8 64位,版本jdk-8u201-windows-x64.exe. 安装JDK后,同时必须配置win10的系统环境变量[示例如下]: JAVA_HOME : F:\Ja ...
- 力扣32(java)-最长有效括号(困难)
题目: 给你一个只包含 '(' 和 ')' 的字符串,找出最长有效(格式正确且连续)括号子串的长度. 示例 1: 输入:s = "(()"输出:2解释:最长有效括号子串是 &quo ...
- HarmonyOS NEXT应用开发之多层嵌套类对象监听
介绍 本示例介绍使用@Observed装饰器和@ObjectLink装饰器来实现多层嵌套类对象属性变化的监听. 效果图预览 使用说明 加载完成后显示商品列表,点击刷新按钮可以刷新商品图片和价格. 实现 ...
- 全链路灰度之 RocketMQ 灰度
简介:本文将以上次介绍过的<如何用 20 分钟就能获得同款企业级全链路灰度能力?>中的场景为基础,来进一步介绍消息场景的全链路灰度. 作者:亦盏 之前的系列文章中,我们已经通过全链路金丝 ...
- C# dotnet 的锁 SemaphoreSlim 和队列
本文主要是试验在顺序进入等待 SemaphoreSlim 的任务是否会按照顺序经过锁执行 我在一个有趣的WPF程序里面,需要限制任务同时执行的线程数量,不然用户就会说用我的程序会让电脑卡渣.而我的任务 ...