HDU 3853 LOOPS 期望dp
题目链接:
http://acm.hdu.edu.cn/showproblem.php?pid=3853
LOOPS
Time Limit: 15000/5000 MS (Java/Others)Memory Limit: 125536/65536 K (Java/Others)
#### 问题描述
> Akemi Homura is a Mahou Shoujo (Puella Magi/Magical Girl).
>
> Homura wants to help her friend Madoka save the world. But because of the plot of the Boss Incubator, she is trapped in a labyrinth called LOOPS.
>
>
> The planform of the LOOPS is a rectangle of R*C grids. There is a portal in each grid except the exit grid. It costs Homura 2 magic power to use a portal once. The portal in a grid G(r, c) will send Homura to the grid below G (grid(r+1, c)), the grid on the right of G (grid(r, c+1)), or even G itself at respective probability (How evil the Boss Incubator is)!
> At the beginning Homura is in the top left corner of the LOOPS ((1, 1)), and the exit of the labyrinth is in the bottom right corner ((R, C)). Given the probability of transmissions of each portal, your task is help poor Homura calculate the EXPECT magic power she need to escape from the LOOPS.
输入
The first line contains two integers R and C (2 <= R, C <= 1000).
The following R lines, each contains C*3 real numbers, at 2 decimal places. Every three numbers make a group. The first, second and third number of the cth group of line r represent the probability of transportation to grid (r, c), grid (r, c+1), grid (r+1, c) of the portal in grid (r, c) respectively. Two groups of numbers are separated by 4 spaces.
It is ensured that the sum of three numbers in each group is 1, and the second numbers of the rightmost groups are 0 (as there are no grids on the right of them) while the third numbers of the downmost groups are 0 (as there are no grids below them).
You may ignore the last three numbers of the input data. They are printed just for looking neat.
The answer is ensured no greater than 1000000.
Terminal at EOF
输出
A real number at 3 decimal places (round to), representing the expect magic power Homura need to escape from the LOOPS.
样例输入
2 2
0.00 0.50 0.50 0.50 0.00 0.50
0.50 0.50 0.00 1.00 0.00 0.00
样例输出
6.000
题意
给你一个R*C的地图,你要从(1,1)走到(R,C),每次你可以选择留原地,或向下走一格,或向右走一格,问最后的
题解
和poj 2096一个意思。
代码
#include<map>
#include<set>
#include<cmath>
#include<queue>
#include<stack>
#include<ctime>
#include<vector>
#include<cstdio>
#include<string>
#include<bitset>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<functional>
using namespace std;
#define X first
#define Y second
#define mkp make_pair
#define lson (o<<1)
#define rson ((o<<1)|1)
#define mid (l+(r-l)/2)
#define sz() size()
#define pb(v) push_back(v)
#define all(o) (o).begin(),(o).end()
#define clr(a,v) memset(a,v,sizeof(a))
#define bug(a) cout<<#a<<" = "<<a<<endl
#define rep(i,a,b) for(int i=a;i<(b);i++)
#define scf scanf
#define prf printf
typedef long long LL;
typedef vector<intVI;
typedef pair<int,intPII;
typedef vector<pair<int,intVPII;
const int INF=0x3f3f3f3f;
const LL INFL=0x3f3f3f3f3f3f3f3fLL;
const double eps=1e-8;
const double PI = acos(-1.0);
//start----------------------------------------------------------------------
const int maxn=1010;
int R,C;
double pro[maxn][maxn][3];
double dp[maxn][maxn];
int main() {
while(scf("%d%d",&R,&C)==2){
for(int i=1;i<=R;i++){
for(int j=1;j<=C;j++){
for(int k=0;k<3;k++){
scf("%lf",&pro[i][j][k]);
}
}
}
for(int i=R;i>=1;i--){
for(int j=C;j>=1;j--){
if(i==R&&j==C){
dp[i][j]=0.0;
}else{
double p0=pro[i][j][0];
double p1=pro[i][j][1];
double p2=pro[i][j][2];
///注意有些点是黑洞,跳不出去的!
if(fabs(1-p0)<eps) continue;
dp[i][j]=(p1*dp[i][j+1]+p2*dp[i+1][j]+2)/(1-p0);
}
}
}
prf("%.3f\n",dp[1][1]);
}
return 0;
}
//end-----------------------------------------------------------------------
HDU 3853 LOOPS 期望dp的更多相关文章
- hdu 3853 LOOPS (概率dp 逆推求期望)
题目链接 LOOPS Time Limit: 15000/5000 MS (Java/Others) Memory Limit: 125536/65536 K (Java/Others)Tota ...
- HDU 3853 LOOPS 概率DP入门
LOOPS Time Limit: 15000/5000 MS (Java/Others) Memory Limit: 125536/65536 K (Java/Others)Total Sub ...
- hdu 3853 LOOPS 概率DP
简单的概率DP入门题 代码如下: #include<iostream> #include<stdio.h> #include<algorithm> #include ...
- HDU 3853 LOOPS 可能性dp(水
在拐~ #include <stdio.h> #include <cstring> #include <iostream> #include <map> ...
- HDU 3853 LOOPS:期望dp【网格型】
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3853 题意: 有一个n*m的网格. 给出在每个格子时:留在原地.向右走一格,向下走一格的概率. 每走一 ...
- 【HDU3853】LOOPS [期望DP]
LOOPS Time Limit: 5 Sec Memory Limit: 64 MB[Submit][Status][Discuss] Description Akemi Homura is a ...
- hdu 3853 LOOPS(概率 dp 期望)
Problem Description Akemi Homura is a Mahou Shoujo (Puella Magi/Magical Girl). Homura wants to help ...
- hdu 3853 LOOPS(基础DP求期望)
题目大意 有一个人被困在一个 R*C(2<=R,C<=1000) 的迷宫中,起初他在 (1,1) 这个点,迷宫的出口是 (R,C).在迷宫的每一个格子中,他能花费 2 个魔法值开启传送通道 ...
- HDU 3853 LOOP (概率DP求期望)
D - LOOPS Time Limit:5000MS Memory Limit:65536KB 64bit IO Format:%I64d & %I64u Submit St ...
随机推荐
- MySQL学习【第六篇sql语句下】
一.select高级用法 1.传统连接(只能内连接,取交集,效率最慢) 1.根据两张表查询张三成绩 select t1.sname,t2.mark from t1,t2 where t1.sid=t2 ...
- MIPS架构——汇编代码转机器代码编译器 Matlab GUI
MIPS架构下的MCU,指令集包含R-Type.I-Type.J-Type三种,在数电课程设计时为了给MCU编写指令集,需要将汇编语言转化成机器代码,这里分享一下自己写的Matlab 的 GUI. 主 ...
- spark练习--由IP得到所在地
今天我们就来介绍,如何根据一个IP来求出这个IP所在的地址是什么,首先我们如果要做这个内容,那么我们要有一个IP地址的所在地字典,这个我们可以在网上购买,形如: 1.0.1.0|1.0.3.255|1 ...
- Android开发——布局性能优化的一些技巧(二)
, 0, drawable.getMinimumWidth(),dra.getMinimumHeight()); tv.setCompoundDrawables(null, null, drawabl ...
- elastic-job+zookeeper实现分布式定时任务调度的使用(springboot版本)
总体思路,要确认一个定时任务需要一个cron表达式+jobDetail: 现在要让实现定时任务的协调,则就让zookeeper,简单说就是需要3要素,zk对象+cron+jobDetail: 总的项目 ...
- 8 stark组件 展示数据
1.编辑按钮构建完成 1.必备知识预习 2.mark_safe模块:将html标签安全传输 3.构造表单数据 4.反向解析 https://www.cnblogs.com/yuanchenqi/art ...
- bootStrap中Tab页签切换
关于$().tab()一般用来实现标签页和胶囊链接内容片段的切换,或是相关内容的页面导航: <ul class="nav nav-tabs" id="myTab&q ...
- STM8S——Universal asynchronous receiver transmitter (UART)
UART基本介绍: 通用异步收发器UART他的功能非常强大 我们只使用UART的全双工异步通信功能,使用中断接收数据. UART_RX:串行数据输入. UART_TX:串行数据输出. 硬件支持: 连接 ...
- Scrapy中的POST请求发送和递归爬取
POST请求发送 重写爬虫应用文件中继承Spider类的 类的里面的start_requests(self)这个方法 def start_requests(self): #请求的url post_ur ...
- 「专题训练」Collecting Bugs(POJ-2096)
题意与分析 题意大致是这样的:给定一个\(n\times s\)的矩阵,每次可以随机的在这个矩阵内给一个格子染色(染过色的仍然可能被选中),问每一行和每一列都有格子被染色的次数的期望. 这题如果从概率 ...