WhittleSearch: Interactive Image Search with Relative Attribute Feedback.  A. Kovashka, D. Parikh, and K. Grauman.  International Journal on Computer Vision (IJCV), Volume 115, Issue 2, pp 185-210, November 2015.  [link]  [arxiv]

Attribute Pivots for Guiding Relevance Feedback in Image Search.  A. Kovashka and K. Grauman.  In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Sydney, Australia, December 2013.  [pdf] [patent pending]

Attribute
Adaptation for Personalized Image Search.  A. Kovashka and K. Grauman.
 In Proceedings of the IEEE International Conference on Computer Vision
(ICCV), Sydney, Australia, December 2013.  [pdf]

Implied
Feedback: Learning Nuances of User Behavior in Image Search.  D. Parikh
and K. Grauman.  In Proceedings of the IEEE International Conference on
Computer Vision (ICCV), Sydney, Australia, December 2013.  [pdf]

WhittleSearch: Image Search with Relative Attribute Feedback. A. Kovashka, D. Parikh, and K. Grauman.  In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Providence, RI, June 2012.  [pdf]  [supp]  [patent pending]

Learning Binary Hash Codes for Large-Scale Image Search.  K. Grauman and R. Fergus.  Book chapter, in Machine Learning for Computer Vision,
Ed., R. Cipolla, S. Battiato, and G. Farinella, Studies in
Computational Intelligence Series, Springer, Volume 411, pp. 49-87, 2013
[pdf] [link]
 
Efficient Region Search for Object Detection.  S. Vijayanarasimhan and K. Grauman.  In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Colorado Springs, CO, June 2011.  [pdf]

Kernelized Locality-Sensitive
Hashing for Scalable Image Search.  B. Kulis and K. Grauman.  In
Proceedings of the IEEE International Conference on Computer Vision
(ICCV), Kyoto, Japan, October, 2009. [pdf]

Kernelized Locality-Sensitive Hashing.  B. Kulis and K. Grauman.  IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI),Vol. 34, No. 6, June 2012.  [link]

Learning Binary Hash Codes for Large-Scale Image Search.  K. Grauman and R. Fergus.  Book chapter, in Machine Learning for Computer Vision,
Ed., R. Cipolla, S. Battiato, and G. Farinella, Studies in
Computational Intelligence Series, Springer, Volume 411, pp. 49-87, 2013
[pdf] [link]

Hashing
Hyperplane Queries to Near Points with Applications to Large-Scale
Active Learning.  P. Jain, S. Vijayanarasimhan, and K. Grauman.  In
Advances in Neural Information Processing Systems (NIPS), Vancouver,
Canada, December 2010.  [pdf]

Hashing
Hyperplane Queries to Near Points with Applications to Large-Scale
Active Learning.  S. Vijayanarasimhan, P. Jain, and K. Grauman. 
Transactions on Pattern Analysis and Machine Intelligence (PAMI), Volume
36, No. 2, pp. 276-288, February 2014.

Fast
Similarity Search for Learned Metrics.   B. Kulis, P. Jain, and K.
Grauman.   In IEEE Transactions on Pattern Analysis and Machine
Intelligence (TPAMI), Vol. 31, No. 12, December, 2009. [link]

Accounting
for the Relative Importance of Objects in Image Retrieval.  S. J. Hwang
and K. Grauman.  In Proceedings of the British Machine Vision
Conference (BMVC), Aberystwyth, UK, September 2010. (Oral) [pdf]

Learning
the Relative Importance of Objects from Tagged Images for Retrieval and
Cross-Modal Search.  S. J. Hwang and K. Grauman.  International Journal
of Computer Vision (IJCV), published online October 2011.  [link]

Efficiently Searching for Similar Images.  K. Grauman.  Invited article in the Communications of the ACM, 2009.  [pdf]

Online
Metric Learning and Fast Similarity Search.  P. Jain, B. Kulis,
I. Dhillon, and K. Grauman.  In Advances in Neural Information
Processing Systems (NIPS), Vancouver, Canada, December 2008.  (Oral) [pdf]

Fast
Image Search for Learned Metrics.  P. Jain, B. Kulis, and K.
Grauman.  In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), Anchorage, Alaska, June 2008.  (Oral) [Best
Student Paper Award]    [pdf]

Pyramid
Match Hashing: Sub-Linear Time Indexing Over Partial
Correspondences.  K. Grauman and T. Darrell.  In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR),
Minneapolis, MN, June 2007.  [pdf]

A Picture is Worth a Thousand Keywords: Image-Based Object Search on a Mobile Platform.  T. Yeh, K. Grauman, K. Tollmar, and T. Darrell.  In CHI 2005, Conference on Human Factors in Computing Systems, Portland, OR, April 2005.  [pdf]

from: http://www.cs.utexas.edu/~grauman/research/pubs-by-topic.html#Fast_similarity_search_and_image

UT-Austin大学在Image search and large-scale retrieval方面的一系列papers的更多相关文章

  1. Subgraph Search Over Large Graph Database

    Subgraph Search Over Large Graph Database Problem Definition Given a graph database and a query grap ...

  2. Computer Vision_33_SIFT:Improving Bag-of-Features for Large Scale Image Search——2010

    此部分是计算机视觉部分,主要侧重在底层特征提取,视频分析,跟踪,目标检测和识别方面等方面.对于自己不太熟悉的领域比如摄像机标定和立体视觉,仅仅列出上google上引用次数比较多的文献.有一些刚刚出版的 ...

  3. 大规模视觉识别挑战赛ILSVRC2015各团队结果和方法 Large Scale Visual Recognition Challenge 2015

    Large Scale Visual Recognition Challenge 2015 (ILSVRC2015) Legend: Yellow background = winner in thi ...

  4. 快速高分辨率图像的立体匹配方法Effective large scale stereo matching

    <Effective large scale stereo matching> In this paper we propose a novel approach to binocular ...

  5. 论文笔记之:Large Scale Distributed Semi-Supervised Learning Using Streaming Approximation

    Large Scale Distributed Semi-Supervised Learning Using Streaming Approximation Google  2016.10.06 官方 ...

  6. Introducing DataFrames in Apache Spark for Large Scale Data Science(中英双语)

    文章标题 Introducing DataFrames in Apache Spark for Large Scale Data Science 一个用于大规模数据科学的API——DataFrame ...

  7. Lessons learned developing a practical large scale machine learning system

    原文:http://googleresearch.blogspot.jp/2010/04/lessons-learned-developing-practical.html Lessons learn ...

  8. 【原】Coursera—Andrew Ng机器学习—课程笔记 Lecture 17—Large Scale Machine Learning 大规模机器学习

    Lecture17 Large Scale Machine Learning大规模机器学习 17.1 大型数据集的学习 Learning With Large Datasets 如果有一个低方差的模型 ...

  9. [C12] 大规模机器学习(Large Scale Machine Learning)

    大规模机器学习(Large Scale Machine Learning) 大型数据集的学习(Learning With Large Datasets) 如果你回顾一下最近5年或10年的机器学习历史. ...

随机推荐

  1. Django实战(8):对比RoR与Django的输入校验机制

    rails有一个”简洁.完美的验证机制,无比强大的表达式和验证框架“.在<Agile Web Development with Rails 4th>一书的7.1节向我们展示了如何验证Pro ...

  2. ffmpeg 添加filter步骤

    a). 自己写一个XXX.c文件,比如vf_transform.c,放在libavfilter目录下.代码可以参考其他filter: b) 在libavfilter/allfilters.c添加一行: ...

  3. linux下文件转码

    一.工具介绍 enca是一个很好用的文件转码工具,使用命令 sudo apt-get install enca 即可安装 二.基本用法 1.查看文件编码 $ enca filename 2.文件转码 ...

  4. Linux 常用基本命令及应用技巧

    需要pdf 版 联系我 我的文件中有目录一.Linux 的常用基本命令................................................................. ...

  5. [CodeForces 893D] Credit Card 贪心

    题意: Recenlty Luba有一张信用卡,一开始金额为0,每天早上可以充值任意数量的钱,但有限制,卡里的钱不能超过D.到了晚上,银行会对信用卡进行一次操作,操作有三种: 1.a[i]>0, ...

  6. Linux signal 编程(转载)

    转载地址:http://blog.sina.com.cn/s/blog_4b226b92010119l5.html 当服务器close一个连接时,若client端接着发数据.根据TCP协议的规定,会收 ...

  7. Java 内存模型基础

    一.并发编程模型的两个关键问题 1. 线程之间如何通信 通信是指线程之间以何种机制来交换信息. 在命令式编程中,线程之间的通信机制有两种:共享内存和消息传递. 在共享内存的并发模型里,线程之间共享程序 ...

  8. Stream中reduce()使用记录

    一.reduce()使用1.第一个参数是我们给出的初值,2.第二个参数是累加器,可以自己用实现接口完成想要的操作,这里使用Bigdecimal的add方法 3.最后reduce会返回计算后的结果 Bi ...

  9. Eclipse 更改默认的编码 和 换行符

  10. 【基础知识】winfrom窗体的属性

    窗体的属性: Icon:窗体的右上角图标 FormBoarderStyle:窗体的边线样式 MaximizeBox: 最大化按钮是否可用 MinimizeBox:最小化按钮是否可用 Opacity:透 ...