题意:给定x轴上有n个点,每一个点都有一个权值,让在x轴上选一个点,求出各点到这个点的距离的三次方乘以权值最小。

析:首先一开始我根本不会三分,也并没有看出来这是一个三分的题目的,学长说这是一个三分的题,我就百度了一下什么是三分算法,一看感觉和二分差不多,当然就是和二分差不多,也是慢慢缩短范围。

这个题也这样,在最左端和最右端不断的三分,直到逼进那个点,刚开始我设置的误差eps是10负8,但是TLE了,我以为是太小,三分数太多,然后我又改成10负6还是TLE,我又失望了,干脆我不用误差了,我让它三分200次就结束,但一直是TLE,直到我改到20次,才AC。但实际并不是我设置的太小,而是我用了pow这个函数和fabs这个函数,这两个函数运行起来太慢了,导致我TLEn次,所以我不建议用这两个函数,完全可以自己写嘛,这样才会更快。

知道三分,这个题就很简单了,就是扫一下而已。

代码如下:

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <set>
#include <map>
#include <cmath>
#include <string>
#include <vector> using namespace std;
typedef long long LL;
const int maxn = 50005;
const double eps = 1E-6;
double x[maxn], w[maxn];
int n; double f(double mid){
double ans = 0.0;
for(int i = 0; i < n; ++i)
ans += pow(fabs(x[i] - mid), 3) * w[i];
return ans; }
int main(){
int T, cases = 0; cin >> T;
while(T--){
scanf("%d", &n);
for(int i = 0; i < n; ++i)
scanf("%lf %lf", &x[i], &w[i]); double r = x[n-1], l = x[0];
for(int i = 0; i < 30; ++i){
double mid_l = l + (r-l) / 3.0;
double mid_r = r - (r-l) / 3.0;
if(f(mid_l) < f(mid_r)) r = mid_r;
else l = mid_l;
} int ans1 = (int)floor(f(l)+0.5), ans2 = (int)floor(f(r)+0.5);
int ans = min(ans1, ans2);
printf("Case #%d: %d\n", ++cases, ans);
}
return 0;
}

这是我不用pow函数的代码:

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <set>
#include <map>
#include <cmath>
#include <string>
#include <vector> using namespace std;
typedef long long LL;
const int maxn = 50005;
const double eps = 1E-8;
double x[maxn], w[maxn];
int n; double f(double mid){
double ans = 0.0;
for(int i = 0; i < n; ++i){
double tmp = x[i] - mid;
if (tmp < 0)tmp = -tmp;
ans += tmp*tmp*tmp* w[i]; }
return ans; }
int main(){
int T, cases = 0; cin >> T;
while(T--){
scanf("%d", &n);
for(int i = 0; i < n; ++i)
scanf("%lf %lf", &x[i], &w[i]); double r = x[n-1], l = x[0];
while(r - l > eps){
double mid_l = l + (r-l) / 3.0;
double mid_r = r - (r-l) / 3.0;
if(f(mid_l) < f(mid_r)) r = mid_r;
else l = mid_l;
} int ans1 = (int)floor(f(l)+0.5), ans2 = (int)floor(f(r)+0.5);
int ans = min(ans1, ans2);
printf("Case #%d: %d\n", ++cases, ans);
}
return 0;
}

HDU 4355 Party All the Time (三分求极值)的更多相关文章

  1. HLJU 1221: 高考签到题 (三分求极值)

    1221: 高考签到题 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 9  Solved: 4 [Submit][id=1221">St ...

  2. hihocoder 1142 三分求极值【三分算法 模板应用】

    #1142 : 三分·三分求极值 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 这一次我们就简单一点了,题目在此: 在直角坐标系中有一条抛物线y=ax^2+bx+c和一 ...

  3. Hihocoder #1142 : 三分·三分求极值

    1142 : 三分·三分求极值 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 这一次我们就简单一点了,题目在此: 在直角坐标系中有一条抛物线y=ax^2+bx+c和一个 ...

  4. hihocoder 1142 三分·三分求极值(三分)

    题目1 : 三分·三分求极值 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 这一次我们就简单一点了,题目在此: 在直角坐标系中有一条抛物线y=ax^2+bx+c和一个点 ...

  5. ZOJ 3203 Light Bulb( 三分求极值 )

    链接:传送门 题意: 求影子长度 L 的最大值 思路:如果 x = 0 ,即影子到达右下角时,如果人继续向后走,那么影子一定是缩短的,所以不考虑这种情况.根据图中的辅助线外加相似三角形定理可以得到 L ...

  6. hdu 4717(三分求极值)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4717 思路:三分时间求极小值. #include <iostream> #include ...

  7. hicoder1142 三分求极值

    在直角坐标系中有一条抛物线y=ax^2+bx+c和一个点P(x,y),求点P到抛物线的最短距离d. 我们代入公式,有: $d = min(\sqrt{(X - x)^2+(aX^2+bX+c-y)^2 ...

  8. hihocoder 第四十周 三分求极值

    题目链接:http://hihocoder.com/contest/hiho40/problem/1 ,一道简单的三分. 题目是在直角坐标系中有一条抛物线y=ax^2+bx+c和一个点P(x,y),求 ...

  9. 【HIHOCODER 1142】 三分·三分求极值

    描述 这一次我们就简单一点了,题目在此: 在直角坐标系中有一条抛物线y=ax^2+bx+c和一个点P(x,y),求点P到抛物线的最短距离d. 输入 第1行:5个整数a,b,c,x,y.前三个数构成抛物 ...

随机推荐

  1. libcur+openssl的编译,使之支持SSL<转>

    本机环境: Visual Studio 2010 . Windows 7 64 bit 1: 下载文件 1.1 libcurl: curl-7.49.1.zip 地址: https://curl.ha ...

  2. linux中与Oracle有关的内核参数详解

    工作当中遇到oracle运行时CPU占用率达到90%以上,调小以下参数值后恢复正常. fs.file-max = 65536 net.core.rmem_default=262144 net.core ...

  3. TEXT 4 A question of standards

    TEXT 4 A question of standards 一个关乎标准的问题 Feb 9th 2006 From The Economist Global Agenda More suggesti ...

  4. C#语法基础

    泛型 1.default(T)可以返回T类型的空值,因为你不知道T是值类型还是引用类型,所以别擅自用null 2.泛型约束 很多时候我们不希望使用者太过自由 我们希望他们在使用我们设计的泛型类型时 不 ...

  5. WebDriverException:Element is not clickable at point - selenium执行过程中遇到的相关报错

    Element is not clickable at point (x, y) 这段可以忽略:本文来自 https://www.cnblogs.com/lozz/p/9947430.html 引起这 ...

  6. 91. Decode Ways (Array; DP)

    A message containing letters from A-Z is being encoded to numbers using the following mapping: 'A' - ...

  7. [leetcode]496. Next Greater Element I下一个较大元素

    You are given two arrays (without duplicates) nums1 and nums2 where nums1’s elements are subset of n ...

  8. ArrayList与LinkedList的基本添加删除方法 模拟栈 队列

    ArrayList  LinkedList ArrayList的add是在末尾添加 linkedlist也是 offer加在末尾 poll获取并移除此列表的头(第一个元素) peek 获取第一个但不移 ...

  9. ROS学习笔记三(理解ROS节点)

    要求已经在Linux系统中安装一个学习用的ros软件包例子: sudo apt-get install ros-indigo-ros-tutorials ROS图形概念概述 nodes:节点,一个节点 ...

  10. kafka 报Failed to load class "org.slf4j.impl.StaticLoggerBinder".[z]

    转:http://blog.chinaunix.net/uid-25135004-id-4172954.html 测试kafka    producer发送消息 和  consumer 接受消息报错 ...