上两篇文章讲了HashMap和HashMap在多线程下引发的问题,说明了,HashMap是一种非常常见、非常有用的集合,并且在多线程情况下使用不当会有线程安全问题。

大多数情况下,只要不涉及线程安全问题,Map基本都可以使用HashMap,不过HashMap有一个问题,就是迭代HashMap的顺序并不是HashMap放置的顺序,也就是无序。HashMap的这一缺点往往会带来困扰,因为有些场景,我们期待一个有序的Map。

这个时候,LinkedHashMap就闪亮登场了,它虽然增加了时间和空间上的开销,但是通过维护一个运行于所有条目的双向链表,LinkedHashMap保证了元素迭代的顺序

四个关注点在LinkedHashMap上的答案

关  注  点 结      论
LinkedHashMap是否允许空 Key和Value都允许空
LinkedHashMap是否允许重复数据 Key重复会覆盖、Value允许重复
LinkedHashMap是否有序 有序
LinkedHashMap是否线程安全 非线程安全

LinkedHashMap基本结构

关于LinkedHashMap,先提两点:

1、LinkedHashMap可以认为是HashMap+LinkedList,即它既使用HashMap操作数据结构,又使用LinkedList维护插入元素的先后顺序

2、LinkedHashMap的基本实现思想就是----多态。可以说,理解多态,再去理解LinkedHashMap原理会事半功倍;反之也是,对于LinkedHashMap原理的学习,也可以促进和加深对于多态的理解。

为什么可以这么说,首先看一下,LinkedHashMap的定义:

public class LinkedHashMap<K,V>
extends HashMap<K,V>
implements Map<K,V>
{
...
}

看到,LinkedHashMap是HashMap的子类,自然LinkedHashMap也就继承了HashMap中所有非private的方法。再看一下LinkedHashMap中本身的方法:

看到LinkedHashMap中并没有什么操作数据结构的方法,也就是说LinkedHashMap操作数据结构(比如put一个数据),和HashMap操作数据的方法完全一样,无非就是细节上有一些的不同罢了。

LinkedHashMap和HashMap的区别在于它们的基本数据结构上,看一下LinkedHashMap的基本数据结构,也就是Entry:

private static class Entry<K,V> extends HashMap.Entry<K,V> {
// These fields comprise the doubly linked list used for iteration.
Entry<K,V> before, after; Entry(int hash, K key, V value, HashMap.Entry<K,V> next) {
super(hash, key, value, next);
}
...
}

列一下Entry里面有的一些属性吧:

1、K key

2、V value

3、Entry<K, V> next

4、int hash

5、Entry<K, V> before

6、Entry<K, V> after

其中前面四个,也就是红色部分是从HashMap.Entry中继承过来的;后面两个,也就是蓝色部分是LinkedHashMap独有的。不要搞错了next和before、After,next是用于维护HashMap指定table位置上连接的Entry的顺序的,before、After是用于维护Entry插入的先后顺序的

还是用图表示一下,列一下属性而已:

初始化LinkedHashMap

假如有这么一段代码:

1 public static void main(String[] args)
2 {
3 LinkedHashMap<String, String> linkedHashMap =
4 new LinkedHashMap<String, String>();
5 linkedHashMap.put("111", "111");
6 linkedHashMap.put("222", "222");
7 }

首先是第3行~第4行,new一个LinkedHashMap出来,看一下做了什么:

 1 public LinkedHashMap() {
2 super();
3 accessOrder = false;
4 }
1 public HashMap() {
2 this.loadFactor = DEFAULT_LOAD_FACTOR;
3 threshold = (int)(DEFAULT_INITIAL_CAPACITY * DEFAULT_LOAD_FACTOR);
4 table = new Entry[DEFAULT_INITIAL_CAPACITY];
5 init();
6 }
 1 void init() {
2 header = new Entry<K,V>(-1, null, null, null);
3 header.before = header.after = header;
4 }
/**
* The head of the doubly linked list.
*/
private transient Entry<K,V> header;

这里出现了第一个多态:init()方法。尽管init()方法定义在HashMap中,但是由于:

1、LinkedHashMap重写了init方法

2、实例化出来的是LinkedHashMap

因此实际调用的init方法是LinkedHashMap重写的init方法。假设header的地址是0x00000000,那么初始化完毕,实际上是这样的:

LinkedHashMap添加元素

继续看LinkedHashMap添加元素,也就是put("111","111")做了什么,首先当然是调用HashMap的put方法:

 1 public V put(K key, V value) {
2 if (key == null)
3 return putForNullKey(value);
4 int hash = hash(key.hashCode());
5 int i = indexFor(hash, table.length);
6 for (Entry<K,V> e = table[i]; e != null; e = e.next) {
7 Object k;
8 if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {
9 V oldValue = e.value;
10 e.value = value;
11 e.recordAccess(this);
12 return oldValue;
13 }
14 }
15
16 modCount++;
17 addEntry(hash, key, value, i);
18 return null;
19 }

第17行又是一个多态,因为LinkedHashMap重写了addEntry方法,因此addEntry调用的是LinkedHashMap重写了的方法:

 1 void addEntry(int hash, K key, V value, int bucketIndex) {
2 createEntry(hash, key, value, bucketIndex);
3
4 // Remove eldest entry if instructed, else grow capacity if appropriate
5 Entry<K,V> eldest = header.after;
6 if (removeEldestEntry(eldest)) {
7 removeEntryForKey(eldest.key);
8 } else {
9 if (size >= threshold)
10 resize(2 * table.length);
11 }
12 }

因为LinkedHashMap由于其本身维护了插入的先后顺序,因此LinkedHashMap可以用来做缓存,第5行~第7行是用来支持FIFO算法的,这里暂时不用去关心它。看一下createEntry方法:

1 void createEntry(int hash, K key, V value, int bucketIndex) {
2 HashMap.Entry<K,V> old = table[bucketIndex];
3 Entry<K,V> e = new Entry<K,V>(hash, key, value, old);
4 table[bucketIndex] = e;
5 e.addBefore(header);
6 size++;
7 }
private void addBefore(Entry<K,V> existingEntry) {
after = existingEntry;
before = existingEntry.before;
before.after = this;
after.before = this;
}

第2行~第4行的代码和HashMap没有什么不同,新添加的元素放在table[i]上,差别在于LinkedHashMap还做了addBefore操作,这四行代码的意思就是让新的Entry和原链表生成一个双向链表。假设字符串111放在位置table[1]上,生成的Entry地址为0x00000001,那么用图表示是这样的:

如果熟悉LinkedList的源码应该不难理解,还是解释一下,注意下existingEntry表示的是header:

1、after=existingEntry,即新增的Entry的after=header地址,即after=0x00000000

2、before=existingEntry.before,即新增的Entry的before是header的before的地址,header的before此时是0x00000000,因此新增的Entry的before=0x00000000

3、before.after=this,新增的Entry的before此时为0x00000000即header,header的after=this,即header的after=0x00000001

4、after.before=this,新增的Entry的after此时为0x00000000即header,header的before=this,即header的before=0x00000001

这样,header与新增的Entry的一个双向链表就形成了。再看,新增了字符串222之后是什么样的,假设新增的Entry的地址为0x00000002,生成到table[2]上,用图表示是这样的:

就不细解释了,只要before、after清除地知道代表的是哪个Entry的就不会有什么问题。

总得来看,再说明一遍,LinkedHashMap的实现就是HashMap+LinkedList的实现方式,以HashMap维护数据结构,以LinkList的方式维护数据插入顺序。

利用LinkedHashMap实现LRU算法缓存

前面讲了LinkedHashMap添加元素,删除、修改元素就不说了,比较简单,和HashMap+LinkedList的删除、修改元素大同小异,下面讲一个新的内容。

LinkedHashMap可以用来作缓存,比方说LRUCache,看一下这个类的代码,很简单,就十几行而已:

public class LRUCache extends LinkedHashMap
{
public LRUCache(int maxSize)
{
super(maxSize, 0.75F, true);
maxElements = maxSize;
} protected boolean removeEldestEntry(java.util.Map.Entry eldest)
{
return size() > maxElements;
} private static final long serialVersionUID = 1L;
protected int maxElements;
}

顾名思义,LRUCache就是基于LRU算法的Cache(缓存),这个类继承自LinkedHashMap,而类中看到没有什么特别的方法,这说明LRUCache实现缓存LRU功能都是源自LinkedHashMap的。LinkedHashMap可以实现LRU算法的缓存基于两点:

1、LinkedList首先它是一个Map,Map是基于K-V的,和缓存一致

2、LinkedList提供了一个boolean值可以让用户指定是否实现LRU

那么,首先我们了解一下什么是LRU:LRU即Least Recently Used,最近最少使用,也就是说,当缓存满了,会优先淘汰那些最近最不常访问的数据。比方说数据a,1天前访问了;数据b,2天前访问了,缓存满了,优先会淘汰数据b。

我们看一下LinkedList带boolean型参数的构造方法:

public LinkedHashMap(int initialCapacity,
float loadFactor,
boolean accessOrder) {
super(initialCapacity, loadFactor);
this.accessOrder = accessOrder;
}

就是这个accessOrder,它表示:

(1)false,所有的Entry按照插入的顺序排列

(2)true,所有的Entry按照访问的顺序排列

第二点的意思就是,如果有1 2 3这3个Entry,那么访问了1,就把1移到尾部去,即2 3 1。每次访问都把访问的那个数据移到双向队列的尾部去,那么每次要淘汰数据的时候,双向队列最头的那个数据不就是最不常访问的那个数据了吗?换句话说,双向链表最头的那个数据就是要淘汰的数据。

"访问",这个词有两层意思:

1、根据Key拿到Value,也就是get方法

2、修改Key对应的Value,也就是put方法

首先看一下get方法,它在LinkedHashMap中被重写:

public V get(Object key) {
Entry<K,V> e = (Entry<K,V>)getEntry(key);
if (e == null)
return null;
e.recordAccess(this);
return e.value;
}

然后是put方法,沿用父类HashMap的:

 1 public V put(K key, V value) {
2 if (key == null)
3 return putForNullKey(value);
4 int hash = hash(key.hashCode());
5 int i = indexFor(hash, table.length);
6 for (Entry<K,V> e = table[i]; e != null; e = e.next) {
7 Object k;
8 if (e.hash == hash && ((k = e.key) == key || key.equals(k))) {
9 V oldValue = e.value;
10 e.value = value;
11 e.recordAccess(this);
12 return oldValue;
13 }
14 }
15
16 modCount++;
17 addEntry(hash, key, value, i);
18 return null;
19 }

修改数据也就是第6行~第14行的代码。看到两端代码都有一个共同点:都调用了recordAccess方法,且这个方法是Entry中的方法,也就是说每次的recordAccess操作的都是某一个固定的Entry。

recordAccess,顾名思义,记录访问,也就是说你这次访问了双向链表,我就把你记录下来,怎么记录?把你访问的Entry移到尾部去。这个方法在HashMap中是一个空方法,就是用来给子类记录访问用的,看一下LinkedHashMap中的实现:

void recordAccess(HashMap<K,V> m) {
LinkedHashMap<K,V> lm = (LinkedHashMap<K,V>)m;
if (lm.accessOrder) {
lm.modCount++;
remove();
addBefore(lm.header);
}
}
private void remove() {
before.after = after;
after.before = before;
}
private void addBefore(Entry<K,V> existingEntry) {
after = existingEntry;
before = existingEntry.before;
before.after = this;
after.before = this;
}

看到每次recordAccess的时候做了两件事情:

1、把待移动的Entry的前后Entry相连

2、把待移动的Entry移动到尾部

当然,这一切都是基于accessOrder=true的情况下。最后用一张图表示一下整个recordAccess的过程吧:

代码演示LinkedHashMap按照访问顺序排序的效果

最后代码演示一下LinkedList按照访问顺序排序的效果,验证一下上一部分LinkedHashMap的LRU功能:

public static void main(String[] args)
{
LinkedHashMap<String, String> linkedHashMap =
new LinkedHashMap<String, String>(16, 0.75f, true);
linkedHashMap.put("111", "111");
linkedHashMap.put("222", "222");
linkedHashMap.put("333", "333");
linkedHashMap.put("444", "444");
loopLinkedHashMap(linkedHashMap);
linkedHashMap.get("111");
loopLinkedHashMap(linkedHashMap);
linkedHashMap.put("222", "2222");
loopLinkedHashMap(linkedHashMap);
} public static void loopLinkedHashMap(LinkedHashMap<String, String> linkedHashMap)
{
Set<Map.Entry<String, String>> set = inkedHashMap.entrySet();
Iterator<Map.Entry<String, String>> iterator = set.iterator(); while (iterator.hasNext())
{
System.out.print(iterator.next() + "\t");
}
System.out.println();
}

注意这里的构造方法要用三个参数那个且最后的要传入true,这样才表示按照访问顺序排序。看一下代码运行结果:

111=111    222=222    333=333    444=444
222=222 333=333 444=444 111=111
333=333 444=444 111=111 222=2222

代码运行结果证明了两点:

1、LinkedList是有序的

2、每次访问一个元素(get或put),被访问的元素都被提到最后面去了

集合(六)LinkedHashMap的更多相关文章

  1. Java基础知识强化之集合框架笔记58:Map集合之LinkedHashMap类的概述

    1. LinkedHashMap类的概述 LinkedHashMap:Map接口的哈希表(保证唯一性) 和 链接(保证有序性)列表实现,具有可预知的迭代顺序. 2. 代码示例: package cn. ...

  2. Java从入门到放弃18---Map集合/HashMap/LinkedHashMap/TreeMap/集合嵌套/Collections工具类常用方法

    Java从入门到放弃18—Map集合/HashMap/LinkedHashMap/TreeMap/集合嵌套/Collections工具类常用方法01 Map集合Map集合处理键值映射关系的数据为了方便 ...

  3. JDK(六)JDK1.8源码分析【集合】LinkedHashMap

    本文转载自joemsu,原文连接 [JDK1.8]JDK1.8集合源码阅读——LinkedHashMap LinkedHashMap的数据结构 可以从上图中看到,LinkedHashMap数据结构相比 ...

  4. 集合(六) WeakHashMap与LinkedHashMap

    5.WeakHashMap (1) 简介 WeakHashMap与HashMap几乎都是相同的,就是它的键是“弱引用”. 第一个问题:何为弱引用?即WeakReference类对象. String a ...

  5. Java集合之LinkedHashMap

    一.初识LinkedHashMap 上篇文章讲了HashMap.HashMap是一种非常常见.非常有用的集合,但在多线程情况下使用不当会有线程安全问题. 大多数情况下,只要不涉及线程安全问题,Map基 ...

  6. Map集合、HashMap集合、LinkedHashMap集合、Hashtable集合、Collections工具类和模拟斗地主洗牌和发牌

    1.Map集合概述和特点 * A:Map接口概述  * 查看API可以知道:          * 将键映射到值的对象          * 一个映射不能包含重复的键          * 每个键最多 ...

  7. Java8集合框架——LinkedHashMap源码分析

    本文的结构如下: 一.LinkedHashMap 的 Javadoc 文档注释和简要说明 二.LinkedHashMap 的内部实现:一些扩展属性和构造函数 三.LinkedHashMap 的 put ...

  8. 死磕 java集合之LinkedHashMap源码分析

    欢迎关注我的公众号"彤哥读源码",查看更多源码系列文章, 与彤哥一起畅游源码的海洋. 简介 LinkedHashMap内部维护了一个双向链表,能保证元素按插入的顺序访问,也能以访问 ...

  9. 集合之LinkedHashMap(含JDK1.8源码分析)

    一.前言 大多数的情况下,只要不涉及线程安全问题,map都可以使用hashMap,不过hashMap有一个问题,hashMap的迭代顺序不是hashMap的存储顺序,即hashMap中的元素是无序的. ...

  10. Java集合之LinkedHashMap源码分析

    概述 HashMap是无序的, 即put的顺序与遍历顺序不保证一样. LinkedHashMap是HashMap的一个子类, 它通过重写父类的相关方法, 实现自己的功能. 它保留插入的顺序. 如果需要 ...

随机推荐

  1. EasuyUI前后台传参

    package com.cn.eport.util; import java.util.List; import java.util.Map; public class PageHelper impl ...

  2. 在c#下用 WCF编写restful

    1.添加WCF服务库 2.在global里面注册路由 RouteTable.Routes.Add(new ServiceRoute("api", new WebServiceHos ...

  3. python,使用PIL库对图片进行操作

    在做识别验证码时,需要对验证码图片进行一些处理,所以就学习了一下PIL的知识,下面是我总结的一些常用方法. 注明:图片的操作都需要Image库,所以要使用import Image导入库 1.打开图片 ...

  4. javascript 中 if (window != top) top.location.href = location.href;的意思

    如果当前窗口不是顶级窗口,就强制修改为顶级窗口: 目的是为了不让别人用iframe嵌入你的页面

  5. 转)ubuntu安装clang

    主要参考:http://blog.csdn.net/firebird321/article/details/48528569 1.下载源码 去http://llvm.org/releases/down ...

  6. 安装tftp服务器进行文件传输

    1. 安装: sudo apt-get install tftp-hpa tftpd-hpa ps: tftpd是服务器,tftp是客户端,客户端能发送和获取,服务器不能动. 2. 配置文件: sud ...

  7. session以及分布式服务器session共享

    一.session的本质 http协议是无状态的,即你连续访问某个网页100次和访问1次对服务器来说是没有区别对待的,因为它记不住你. 那么,在一些场合,确实需要服务器记住当前用户怎么办?比如用户登录 ...

  8. APScheduler 浅析

    前言 APScheduler是python下的任务调度框架,全程为Advanced Python Scheduler,是一款轻量级的Python任务调度框架.它允许你像Linux下的Crontab那样 ...

  9. mysql水平分区

    解决问题:单表数据量过大 ALTER TABLE boc_url_log PARTITION BY RANGE (ulid) ( PARTITION log_1 VALUES LESS THAN () ...

  10. mysql添加注释

    -- 查看字段类型-- show columns from campaign_distribute --给表添加注释 -- alter table campaign_distribute commen ...