openjudge-NOI 2.5-1756 八皇后
题目链接:http://noi.openjudge.cn/ch0205/1756/
题解:
上一道题稍作改动……
#include<cstdio>
#include<algorithm>
using namespace std;
bool a[][];
int num,s[];
void print()
{
for(int i=;i<=;i++)
{
for(int j=;j<=;j++)
{
if(a[i][j])
{
s[num]*=;
s[num]+=j;
}
}
}
}
int check(int x,int y)
{
int tmp1,tmp2;
tmp1=;tmp2=y-x+;
for(;tmp1<=x;tmp1++,tmp2++)
{
if(tmp2>=&&tmp2<=&&a[tmp1][tmp2]==true)return ;
}
tmp1=;tmp2=y+x-;
for(;tmp1<=x;tmp1++,tmp2--)
{
if(tmp2>=&&tmp2<=&&a[tmp1][tmp2]==true)return ;
}
tmp1=;tmp2=y;
for(;tmp1<=x;tmp1++)
{
if(tmp2>=&&tmp2<=&&a[tmp1][tmp2]==true)return ;
}
return ;
}
void dfs(int dep)
{
if(dep==)
{
num++;
print();
return;
}
for(int i=;i<=;i++)
{
if(dep==||check(dep,i))
{
a[dep][i]=true;
dfs(dep+);
a[dep][i]=false;
}
}
}
int main()
{
dfs();
sort(s+,s+);
int m,n;
scanf("%d",&n);
while(n--)
{
scanf("%d",&m);
printf("%d\n",s[m]);
}
return ;
}
openjudge-NOI 2.5-1756 八皇后的更多相关文章
- noi 1700 + 1756 八皇后问题 x
1700:八皇后问题 总时间限制: 10000ms 内存限制: 65536kB 描述 在国际象棋棋盘上放置八个皇后,要求每两个皇后之间不能直接吃掉对方. 输入 无输入. 输出 按给定顺序和格式输出 ...
- 搜索6--noi1700:八皇后问题
搜索6--noi1700:八皇后问题 一.心得 二.题目 1756:八皇后 查看 提交 统计 提问 总时间限制: 1000ms 内存限制: 65536kB 描述 会下国际象棋的人都很清楚:皇后可以 ...
- OpenJudge 2754 八皇后
1.链接地址: http://bailian.openjudge.cn/practice/2754 2.题目: 总时间限制: 1000ms 内存限制: 65536kB 描述 会下国际象棋的人都很清楚: ...
- [OpenJudge] 百练2754 八皇后
八皇后 Description 会下国际象棋的人都很清楚:皇后可以在横.竖.斜线上不限步数地吃掉其他棋子.如何将8个皇后放在棋盘上(有8 * 8个方格),使它们谁也不能被吃掉!这就是著名的八皇后问题. ...
- 八皇后算法的另一种实现(c#版本)
八皇后: 八皇后问题,是一个古老而著名的问题,是回溯算法的典型案例.该问题是国际西洋棋棋手马克斯·贝瑟尔于1848年提出:在8×8格的国际象棋上摆放八个皇后,使其不能互相攻击,即任意两个皇后都不能处于 ...
- 数据结构0103汉诺塔&八皇后
主要是从汉诺塔及八皇后问题体会递归算法. 汉诺塔: #include <stdio.h> void move(int n, char x,char y, char z){ if(1==n) ...
- Python学习二(生成器和八皇后算法)
看书看到迭代器和生成器了,一般的使用是没什么问题的,不过很多时候并不能用的很习惯 书中例举了经典的八皇后问题,作为一个程序员怎么能够放过做题的机会呢,于是乎先自己来一遍,于是有了下面这个ugly的代码 ...
- Python解决八皇后问题
最近看Python看得都不用tab键了,哈哈.今天看了一个经典问题--八皇后问题,说实话,以前学C.C++的时候有这个问题,但是当时不爱学,没搞会,后来算法课上又碰到,只是学会了思想,应该是学回溯法的 ...
- OpenJudge1700:八皇后问题 //不属于基本法的基本玩意
1700:八皇后问题//搜索 总时间限制: 10000ms 内存限制: 65536kB 描述 在国际象棋棋盘上放置八个皇后,要求每两个皇后之间不能直接吃掉对方. 输入 无输入. 输出 按给定顺序和 ...
- C#八皇后问题 枚举值
记得刚出道的时候, 有考虑怎么面试, 以及可能会遇到的面试题, 有一个人说了一下 八皇后问题, 据说要用 sql 语句写出来, 暂时我 写了一个C#版本的, 经测验,八皇后算法结果为 92种, 这个与 ...
随机推荐
- MT【135】条件线性化
已知\(x,y>0,\dfrac{1}{x}+\dfrac{2}{y}=1\),求\(\dfrac{1}{x+1}+\dfrac{2}{y+1}\)的最大值_____ 解答:令\(a=\dfra ...
- 【刷题】HDU 2222 Keywords Search
Problem Description In the modern time, Search engine came into the life of everybody like Google, B ...
- [CF850F] Rainbow Balls
题目大意 这里 题解 我们枚举最后剩下的球的种类,那么其他球可以看做没用了. 设选定的球有\(a_i\)个,球的总数为\(s=\sum_{i=1}^n a_i\). 现在问题变为:在一个长度为\(s\ ...
- Java应用中使用ShutdownHook友好地清理现场
在线上Java程序中经常遇到进程程挂掉,一些状态没有正确的保存下来,这时候就需要在JVM关掉的时候执行一些清理现场的代码.Java中得ShutdownHook提供了比较好的方案. JDK在1.3之后提 ...
- 压测工具-Jmeter
server压力测试首选: Apache JMeter是Apache组织开发的基于Java的压力测试工具.用于对软件做压力测试,它最初被设计用于Web应用测试,但后来扩展到其他测试领域. 1 JMet ...
- SSH连接与自动化部署工具paramiko与Fabric
paramiko paramiko是基于Python实现的SSH2远程安全连接,支持认证及密钥方法.可以实现远程命令执行,文件传输,中间SSH代理等功能,相对于Pexpect,封装层次更高. pip ...
- K8S从私有仓库拉取镜像
通常来讲,我们在通过公共镜像仓库拉取docker镜像的时候,不需要任何的认证操作,但我们在构建了企业的私有镜像以后,就不得不在拉取镜像之前通过用户名密码来完成认证. 在docker单机环境中,我们可以 ...
- 安装lsb_release
lsb_release命令用来查看当前系统的发行版信息(prints certain LSB (Linux Standard Base) and Distribution information.). ...
- python操作mongo脚本
#!/usr/bin/python# -*- coding: utf-8 -*- import sysimport osimport jsonfrom pymongo import MongoClie ...
- What Does “Neurons that Fire Together Wire Together” Mean?
What Does “Neurons that Fire Together Wire Together” Mean? I’ve heard the phrase “neurons that fire ...