The Go image package  go图片包:图片包的基本原理

21 September 2011

Introduction

The image and image/color packages define a number of types: color.Color and color.Model describe colors, image.Point and image.Rectangle describe basic 2-D geometry, and image.Image brings the two concepts together to represent a rectangular grid of colors. A separate article covers image composition with the image/draw package.

Colors and Color Models

Color is an interface that defines the minimal method set of any type that can be considered a color: one that can be converted to red, green, blue and alpha values. The conversion may be lossy, such as converting from CMYK or YCbCr color spaces.

type Color interface {
// RGBA returns the alpha-premultiplied red, green, blue and alpha values
// for the color. Each value ranges within [0, 0xFFFF], but is represented
// by a uint32 so that multiplying by a blend factor up to 0xFFFF will not
// overflow.
RGBA() (r, g, b, a uint32)
}

There are three important subtleties about the return values. First, the red, green and blue are alpha-premultiplied: a fully saturated red that is also 25% transparent is represented by RGBA returning a 75% r. Second, the channels have a 16-bit effective range: 100% red is represented by RGBA returning an r of 65535, not 255, so that converting from CMYK or YCbCr is not as lossy. Third, the type returned is uint32, even though the maximum value is 65535, to guarantee that multiplying two values together won't overflow. Such multiplications occur when blending two colors according to an alpha mask from a third color, in the style of Porter and Duff's classic algebra:

dstr, dstg, dstb, dsta := dst.RGBA()
srcr, srcg, srcb, srca := src.RGBA()
_, _, _, m := mask.RGBA()
const M = 1<<16 - 1
// The resultant red value is a blend of dstr and srcr, and ranges in [0, M].
// The calculation for green, blue and alpha is similar.
dstr = (dstr*(M-m) + srcr*m) / M

The last line of that code snippet would have been more complicated if we worked with non-alpha-premultiplied colors, which is why Color uses alpha-premultiplied values.

The image/color package also defines a number of concrete types that implement the Color interface. For example, RGBA is a struct that represents the classic "8 bits per channel" color.

type RGBA struct {
R, G, B, A uint8
}

Note that the R field of an RGBA is an 8-bit alpha-premultiplied color in the range [0, 255]. RGBA satisfies the Colorinterface by multiplying that value by 0x101 to generate a 16-bit alpha-premultiplied color in the range [0, 65535]. Similarly, the NRGBA struct type represents an 8-bit non-alpha-premultiplied color, as used by the PNG image format. When manipulating an NRGBA's fields directly, the values are non-alpha-premultiplied, but when calling the RGBA method, the return values are alpha-premultiplied.

Model is simply something that can convert `Color`s to other `Color`s, possibly lossily. For example, the GrayModel can convert any Color to a desaturated Gray. A Palette can convert any Color to one from a limited palette.

type Model interface {
Convert(c Color) Color
} type Palette []Color

Points and Rectangles

Point is an (x, y) co-ordinate on the integer grid, with axes increasing right and down. It is neither a pixel nor a grid square. A Point has no intrinsic width, height or color, but the visualizations below use a small colored square.

type Point struct {
X, Y int
}
p := image.Point{2, 1}

Rectangle is an axis-aligned rectangle on the integer grid, defined by its top-left and bottom-right Point. A Rectangle also has no intrinsic color, but the visualizations below outline rectangles with a thin colored line, and call out their Min and Max `Point`s.

type Rectangle struct {
Min, Max Point
}

For convenience, image.Rect(x0, y0, x1, y1) is equivalent to image.Rectangle{image.Point{x0, y0}, image.Point{x1, y1}}, but is much easier to type.

Rectangle is inclusive at the top-left and exclusive at the bottom-right. For a Point p and a Rectangle rp.In(r) if and only if r.Min.X <= p.X && p.X < r.Max.X, and similarly for Y. This is analogous to how a slice s[i0:i1] is inclusive at the low end and exclusive at the high end. (Unlike arrays and slices, a Rectangle often has a non-zero origin.)

r := image.Rect(2, 1, 5, 5)
// Dx and Dy return a rectangle's width and height.
fmt.Println(r.Dx(), r.Dy(), image.Pt(0, 0).In(r)) // prints 3 4 false

Adding a Point to a Rectangle translates the Rectangle. Points and Rectangles are not restricted to be in the bottom-right quadrant.

r := image.Rect(2, 1, 5, 5).Add(image.Pt(-4, -2))
fmt.Println(r.Dx(), r.Dy(), image.Pt(0, 0).In(r)) // prints 3 4 true

Intersecting two Rectangles yields another Rectangle, which may be empty.

r := image.Rect(0, 0, 4, 3).Intersect(image.Rect(2, 2, 5, 5))
// Size returns a rectangle's width and height, as a Point.
fmt.Printf("%#v\n", r.Size()) // prints image.Point{X:2, Y:1}

Points and Rectangles are passed and returned by value. A function that takes a Rectangle argument will be as efficient as a function that takes two Point arguments, or four int arguments.

Images

An Image maps every grid square in a Rectangle to a Color from a Model. "The pixel at (x, y)" refers to the color of the grid square defined by the points (x, y), (x+1, y), (x+1, y+1) and (x, y+1).

type Image interface {
// ColorModel returns the Image's color model.
ColorModel() color.Model
// Bounds returns the domain for which At can return non-zero color.
// The bounds do not necessarily contain the point (0, 0).
Bounds() Rectangle
// At returns the color of the pixel at (x, y).
// At(Bounds().Min.X, Bounds().Min.Y) returns the upper-left pixel of the grid.
// At(Bounds().Max.X-1, Bounds().Max.Y-1) returns the lower-right one.
At(x, y int) color.Color
}

A common mistake is assuming that an Image's bounds start at (0, 0). For example, an animated GIF contains a sequence of Images, and each Image after the first typically only holds pixel data for the area that changed, and that area doesn't necessarily start at (0, 0). The correct way to iterate over an Image m's pixels looks like:

b := m.Bounds()
for y := b.Min.Y; y < b.Max.Y; y++ {
for x := b.Min.X; x < b.Max.X; x++ {
doStuffWith(m.At(x, y))
}
}

Image implementations do not have to be based on an in-memory slice of pixel data. For example, a Uniform is an Image of enormous bounds and uniform color, whose in-memory representation is simply that color.

type Uniform struct {
C color.Color
}

Typically, though, programs will want an image based on a slice. Struct types like RGBA and Gray (which other packages refer to as image.RGBA and image.Gray) hold slices of pixel data and implement the Image interface.

type RGBA struct {
// Pix holds the image's pixels, in R, G, B, A order. The pixel at
// (x, y) starts at Pix[(y-Rect.Min.Y)*Stride + (x-Rect.Min.X)*4].
Pix []uint8
// Stride is the Pix stride (in bytes) between vertically adjacent pixels.
Stride int
// Rect is the image's bounds.
Rect Rectangle
}

These types also provide a Set(x, y int, c color.Color) method that allows modifying the image one pixel at a time.

m := image.NewRGBA(image.Rect(0, 0, 640, 480))
m.Set(5, 5, color.RGBA{255, 0, 0, 255})

If you're reading or writing a lot of pixel data, it can be more efficient, but more complicated, to access these struct type's Pix field directly.

The slice-based Image implementations also provide a SubImage method, which returns an Image backed by the same array. Modifying the pixels of a sub-image will affect the pixels of the original image, analogous to how modifying the contents of a sub-slice s[i0:i1] will affect the contents of the original slice s.

m0 := image.NewRGBA(image.Rect(0, 0, 8, 5))
m1 := m0.SubImage(image.Rect(1, 2, 5, 5)).(*image.RGBA)
fmt.Println(m0.Bounds().Dx(), m1.Bounds().Dx()) // prints 8, 4
fmt.Println(m0.Stride == m1.Stride) // prints true

For low-level code that works on an image's Pix field, be aware that ranging over Pix can affect pixels outside an image's bounds. In the example above, the pixels covered by m1.Pix are shaded in blue. Higher-level code, such as the At and Set methods or the image/draw package, will clip their operations to the image's bounds.

Image Formats

The standard package library supports a number of common image formats, such as GIF, JPEG and PNG. If you know the format of a source image file, you can decode from an io.Reader directly.

import (
"image/jpeg"
"image/png"
"io"
) // convertJPEGToPNG converts from JPEG to PNG.
func convertJPEGToPNG(w io.Writer, r io.Reader) error {
img, err := jpeg.Decode(r)
if err != nil {
return err
}
return png.Encode(w, img)
}

If you have image data of unknown format, the image.Decode function can detect the format. The set of recognized formats is constructed at run time and is not limited to those in the standard package library. An image format package typically registers its format in an init function, and the main package will "underscore import" such a package solely for the side effect of format registration.

import (
"image"
"image/png"
"io" _ "code.google.com/p/vp8-go/webp"
_ "image/jpeg"
) // convertToPNG converts from any recognized format to PNG.
func convertToPNG(w io.Writer, r io.Reader) error {
img, _, err := image.Decode(r)
if err != nil {
return err
}
return png.Encode(w, img)
}

By Nigel Tao

Related articles

24 The Go image package go图片包:图片包的基本原理的更多相关文章

  1. Java开发桌面程序学习(七)——ImageView设置图片以及jar包读取fxml文件

    ImageView设置图片 JavaFx的ImageView,设置图片不能直接通过属性设置,只能通过代码来设置 ImageView设置图片 首先,我们让fxml对应的那个controller的java ...

  2. [js高手之路]深入浅出webpack教程系列9-打包图片(file-loader)用法

    我们还是接着上文继续,本文我们要讲的是图片资源的打包,图片在静态排版中,经常出现的两个位置是css通过background引入背景,还有一种就是在html模板文件中用img标签引入的方式,如果要在we ...

  3. 解决 mac 10.14.4 无法 sublime text 3207 安装 Package Control,以及安装第三方包报错 `Package Control There are no packages available for installation`

    下载最新的 sublime text 3207,无法安装 Package Control. 根据官方提示,手动安装 Package Control. 手动安装 Package Control 后,无法 ...

  4. Package.json中dependencies依赖包中^符号和~符号前缀的区别

    刚git了webpack的包发现package.json里面dependencies依赖包的版本号前面的符号有两种,一种是~,一种是^,如下图标记: 然后搜了下在stackoverflow上找到一个比 ...

  5. eclipse批量修改package、import中的包名

    问题:想把以前开发的包,用到新项目中,怎么操作呢? 解决方案: 把文件夹复制到新项目包中,同时需要更改很多package.import中的包名第一步:打开一个java文件,选中要替换的字段: 第二步: ...

  6. 下载了包在node_modules中,但没有在package.json中保存该包信息。

    发现安装了包,但没有在package.json中保存该包信息,而且没有创建package-lock.json. 经过测试,发现是使用cnpm的原因,使用npm安装不会出现这样的问题,(与cnpm版本无 ...

  7. 利用POI获取Excel中图片和图片位置

    利用POI获取Excel中图片和图片位置(支持excel2003or2007多sheet) 转自:http://blog.csdn.net/delongcpp/article/details/8833 ...

  8. [转]java nio解决半包 粘包问题

    java nio解决半包 粘包问题 NIO socket是非阻塞的通讯模式,与IO阻塞式的通讯不同点在于NIO的数据要通过channel放到一个缓存池ByteBuffer中,然后再从这个缓存池中读出数 ...

  9. 关于war包 jar包 ear包 及打包方法

    关于war包 jar包 ear包 及打包方法 war包:是做好一个web应用后,通常是网站打成包部署到容器中 jar包:通常是开发的时候要引用的通用类,打成包便于存放管理. ear包:企业级应用 通常 ...

  10. linux包之包管理命令rpm-yum

    背景 YUM(Yellow dog Updater, Modified)为多个Linux发行版的前端软件包管理器,例如 Redhat RHEL, CentOS & Fedora. YUM通过调 ...

随机推荐

  1. 使用apt-mirror搭建debian本地仓库

    apt-mirror能够将官方镜像下载到本地,并保证目录结构与其一致,但是不能对镜像仓库进行修改.如果想要修改镜像仓库,需要使用reprepro. 1.安装apt-mirror # aptitude ...

  2. javascript实现div的显示和隐藏

    http://www.cnblogs.com/oec2003/archive/2007/05/05/736492.html <html> <head> <meta htt ...

  3. mysql 中的共享锁和排他锁

    共享锁(share lock) 共享锁又称读锁,是读取操作创建的锁.其他用户可以并发读取数据,但任何事务都不能对数据进行修改(获取数据上的排他锁),直到已释放所有共享锁. 如果事务T对数据A加上共享锁 ...

  4. EL与OGNL以及值栈的理解

    这里先添加下在项目遇到的问题: 这两天在做论坛项目的时候,犯了一个错误:将数据放入值栈中,结果jsp页面获取不到. 困扰了许久: 总结如下: (1)每个action对应相应页面的值栈中值的获取,在属于 ...

  5. 【Asp.net入门01】动态网站基础知识

    本节将介绍: 网站搭建流程 动态网站相关基础概念 网页的访问原理 使用浏览器访问网站是我们几乎天天在做的事情.以前我们只需要关注网页内容,作为网站开发人员,从现在开始我们要关注更深层次的东西了. 1. ...

  6. python map对象

    工作中遇到需要将List对象中的元素(list类型)转化为集合(set)类型,转化完成之后需要需要访问其中的元素. 第一步,使用map方法进行转换 data = [[1, 3, 4], [2, 3, ...

  7. NO.6LINUX基本命令

    1.练习1 ) 将用户信息数据库文件和组信息数据库文件纵向合并为一个文件/1.txt(覆盖) cd / cat /etc/passwd /etc/group>1.txt 2) 将用户信息数据库文 ...

  8. 并发库应用之四 & 线程锁Lock应用

    Java5的线程并发库中,提供了相应的线程锁接口Lock来帮助我们同步处理.Lock比传统线程模型中的synchronized更加面向对象,锁本身也是一个对象,两个线程执行的代码要实现同步互斥效果,就 ...

  9. Navicat数据备份

    备份:点击数据库---数据传输 目标:备份地点,数据会传送到yaozh_backup 数据传输成功

  10. 视音频数据处理入门:FLV封装格式解析

    ===================================================== 视音频数据处理入门系列文章: 视音频数据处理入门:RGB.YUV像素数据处理 视音频数据处理 ...