1、API描述

  在WIN32 API中,串口使用文件方式进行访问,其操作的API基本上与文件操作的API一致。

  打开串口

  Win32 中用于打开串口的API 函数为CreateFile,其原型为:

HANDLE CreateFile (
 LPCTSTR lpFileName, //将要打开的串口逻辑名,如COM1 或COM2
 DWORD dwAccess, //指定串口访问的类型,可以是读取、写入或两者并列
 DWORD dwShareMode, //指定共享属性,由于串口不能共享,该参数必须置为0
 LPSECURITY_ATTRIBUTES lpsa, //引用安全性属性结构,缺省值为NULL
 DWORD dwCreate, //创建标志,对串口操作该参数必须置为OPEN EXISTING
 DWORD dwAttrsAndFlags, //属性描述,用于指定该串口是否可进行异步操作,
 //FILE_FLAG_OVERLAPPED:可使用异步的I/O
 HANDLE hTemplateFile //指向模板文件的句柄,对串口而言该参数必须置为NULL
);

  例如,以下程序用于以同步读写方式打开串口COM1:

HANDLE hCom;
DWORD dwError;
hCon = CreateFile("COM1", GENERIC_READ | GENERIC_WRITE, 0, NULL, OPEN_EXISTING, 0, NULL);
if (hCom == (HANDLE)0xFFFFFFFF)
{
 dwError = GetLastError();
 MessageBox(dwError);
}

  对于dwAttrsAndFlags参数及FILE_FLAG_OVERLAPPED标志的由来,可解释如下:Windows文件操作分为同步I/O和重叠I/O(Overlapped I/ O)两种方式,在同步I/O方式中,API会阻塞直到操作完成以后才能返回(在多线程方式中,虽然不会阻塞主线程,但是仍然会阻塞监听线程);而在重叠I/O方式中,API会立即返回,操作在后台进行,避免线程的阻塞。重叠I/O非常灵活,它也可以实现阻塞(例如我们可以设置一定要读取到一个数据才能进行到下一步操作)。如果进行I/O操作的API 在没有完成操作的情况下返回,我们可以通过调用GetOverLappedResult()函数阻塞到I/O操作完成后返回。

  配置串口

  配置串口是通过改变设备控制块DCB(Device Control Block) 的成员变量值来实现的,接收缓冲区和发送缓冲区的大小可通过SetupComm函数来设置。

  DCB结构体定义为:

typedef struct _DCB { // dcb 
 DWORD DCBlength; // sizeof(DCB) 
 DWORD BaudRate; // current baud rate 
 DWORD fBinary: 1; // binary mode, no EOF check 
 DWORD fParity: 1; // enable parity checking 
 DWORD fOutxCtsFlow:1; // CTS output flow control 
 DWORD fOutxDsrFlow:1; // DSR output flow control 
 DWORD fDtrControl:2; // DTR flow control type 
 DWORD fDsrSensitivity:1; // DSR sensitivity 
 DWORD fTXContinueOnXoff:1; // XOFF continues Tx 
 DWORD fOutX: 1; // XON/XOFF out flow control 
 DWORD fInX: 1; // XON/XOFF in flow control 
 DWORD fErrorChar: 1; // enable error replacement 
 DWORD fNull: 1; // enable null stripping 
 DWORD fRtsControl:2; // RTS flow control 
 DWORD fAbortOnError:1; // abort reads/writes on error 
 DWORD fDummy2:17; // reserved 
 WORD wReserved; // not currently used 
 WORD XonLim; // transmit XON threshold 
 WORD XoffLim; // transmit XOFF threshold 
 BYTE ByteSize; // number of bits/byte, 4-8 
 BYTE Parity; // 0-4=no,odd,even,mark,space 
 BYTE StopBits; // 0,1,2 = 1, 1.5, 2 
 char XonChar; // Tx and Rx XON character 
 char XoffChar; // Tx and Rx XOFF character 
 char ErrorChar; // error replacement character 
 char EofChar; // end of input character 
 char EvtChar; // received event character 
 WORD wReserved1; // reserved; do not use 
} DCB; 
而SetupComm函数的原型则为:
BOOL SetupComm(
 HANDLE hFile, // handle to communications device
 DWORD dwInQueue, // size of input buffer
 DWORD dwOutQueue // size of output buffer
);

  以下程序将串口设置为:波特率为9600,数据位数为7位,停止位为2 位,偶校验,接收缓冲区和发送缓冲区大小均为1024个字节,最后用PurgeComm函数终止所有的后台读写操作并清空接收缓冲区和发送缓冲区:

DCB dcb;
dcb.BaudRate = 9600; //波特率为9600
dcb.ByteSize = 7; //数据位数为7位
dcb.Parity = EVENPARITY; //偶校验
dcb.StopBits = 2; //两个停止位
dcb.fBinary = TRUE;
dcb.fParity = TRUE;
if (!SetCommState(hCom, &dcb))
{
 MessageBox("串口设置出错!");

SetupComm(hCom, 1024, 1024);
PurgeComm(hCom, PURCE_TXABORT | PURGE_RXABORT | PURGE_TXCLEAR | PURGE_RXCLEAR);

  超时设置

  超时设置是通过改变COMMTIMEOUTS结构体的成员变量值来实现的,COMMTIMEOUTS的原型为:

typedef struct _COMMTIMEOUTS
{
 DWORD ReadIntervalTimeout; //定义两个字符到达的最大时间间隔,单位:毫秒
 //当读取完一个字符后,超过了ReadIntervalTimeout,仍未读取到下一个字符,就会
 //发生超时
 DWORD ReadTotalTimeoutMultiplier; 
 DWORD ReadTotalTimeoutConstant;
 //其中各时间所满足的关系如下:
 //ReadTotalTimeout = ReadTotalTimeOutMultiplier* BytesToRead + ReadTotalTimeoutConstant
 DWORD WriteTotalTimeoutMultiplier;
 DWORD WriteTotalTimeoutConstant;
} COMMTIMEOUTS, *LPCOMMTIMEOUTS;

  设置超时的函数为SetCommTimeouts,其原型中接收COMMTIMEOUTS的指针为参数:

BOOL SetCommTimeouts(
 HANDLE hFile, // handle to communications device
 LPCOMMTIMEOUTS lpCommTimeouts // pointer to comm time-out structure
);

  以下程序将串口读操作的超时设定为10 毫秒:

COMMTIMEOUTS to;
memset(&to, 0, sizeof(to));
to.ReadIntervalTimeout = 10;
SetCommTimeouts(hCom, &to);

  与SetCommTimeouts对应的GetCommTimeouts()函数的原型为:

BOOL GetCommTimeouts(
 HANDLE hFile, // handle of communications device
 LPCOMMTIMEOUTS lpCommTimeouts // pointer to comm time-out structure
);

  事件设置

  在读写串口之前,需要用SetCommMask ()函数设置事件掩模来监视指定通信端口上的事件,其原型为:

BOOL SetCommMask(
 HANDLE hFile, //标识通信端口的句柄
 DWORD dwEvtMask //能够使能的通信事件
);

  有了Set当然还会有Get,与SetCommMask对应的GetCommMask()函数的原型为:

BOOL GetCommMask(
 HANDLE hFile, //标识通信端口的句柄
 LPDWORD lpEvtMask // address of variable to get event mask
);

  串口上可以发生的事件可以是如下事件列表中的一个或任意组合:EV_BREAK、EV_CTS、EV_DSR、EV_ERR、EV_RING、EV_RLSD、EV_RXCHAR、EV_RXFLAG、EV_TXEMPTY。

  我们可以用WaitCommEvent()函数来等待串口上我们利用SetCommMask ()函数设置的事件:

BOOL WaitCommEvent(
 HANDLE hFile, //标识通信端口的句柄
 LPDWORD lpEvtMask, // address of variable for event that occurred
 LPOVERLAPPED lpOverlapped, // address of overlapped structure
);

  WaitCommEvent()函数一直阻塞,直到串口上发生我们用所SetCommMask ()函数设置的通信事件为止。一般而言,当WaitCommEvent()返回时,程序员可以由分析*lpEvtMask而获得发生事件的类别,再进行相应的处理。

  读串口

  对串口进行读取所用的函数和对文件进行读取所用的函数相同,读函数原型如下:

BOOL ReadFile(
 HANDLE hFile, // handle of file to read
 LPVOID lpBuffer, // pointer to buffer that receives data
 DWORD nNumberOfBytesToRead, // number of bytes to read
 LPDWORD lpNumberOfBytesRead, // pointer to number of bytes read
 LPOVERLAPPED lpOverlapped // pointer to structure for overlapped I/O
);

  写串口

  对串口进行写入所用的函数和对文件进行写入所用的函数相同,写函数原型如下:

BOOL WriteFile(
 HANDLE hFile, // handle to file to write to
 LPCVOID lpBuffer, // pointer to data to write to file
 DWORD nNumberOfBytesToWrite, // number of bytes to write
 LPDWORD lpNumberOfBytesWritten, // pointer to number of bytes written
 LPOVERLAPPED lpOverlapped // pointer to structure for overlapped I/O
);

  关闭串口

  利用API 函数实现串口通信时关闭串口非常简单,只需使用CreateFile 函数返回的句柄作为参数调用CloseHandle 即可:

BOOL CloseHandle(
 HANDLE hObject // handle to object to close
);

深入浅出VC++串口编程之基于Win32 API的更多相关文章

  1. 【C#】分享基于Win32 API的服务操作类(解决ManagedInstallerClass.InstallHelper不能带参数安装的问题)

    注:这里的服务是指Windows 服务. ------------------201508250915更新------------------ 刚刚得知TransactedInstaller类是支持带 ...

  2. spark 中的RDD编程 -以下基于Java api

    1.RDD介绍:     RDD,弹性分布式数据集,即分布式的元素集合.在spark中,对所有数据的操作不外乎是创建RDD.转化已有的RDD以及调用RDD操作进行求值.在这一切的背后,Spark会自动 ...

  3. VS2010下MFC的串口编程

    串口通信简介 一般来说,计算机都有一个或多个串行端口,这些串口提供了外部设备与PC进行数据传输和通信的通道,在CPU和外设之间充当解释器的角色.当字符数据从CPU发送给外设时,这些字符数据将被转换成串 ...

  4. 【转】VS2010下MFC的串口编程

    串口通信简介 一般来说,计算机都有一个或多个串行端口,这些串口提供了外部设备与PC进行数据传输和通信的通道,在CPU和外设之间充当解释器的角色.当字符数据从CPU发送给外设时,这些字符数据将被转换成串 ...

  5. windows串口编程Win32,PComm串口开发

    https://blog.csdn.net/u011430225/article/details/51496456 https://blog.csdn.net/eit520/article/detai ...

  6. 多线程串口编程工具CserialPort类(附VC基于MFC单文档协议通讯源程序及详细编程步骤)

    老有人觉得MSComm通讯控件很土,更有人大声疾呼:忘了它吧.确实当我们对串口编程有了一定的了解后,应该用API函数写一个属于自己的串口程序,由于编程者对程序了解,对程序修改自如.但我一直没有停止过用 ...

  7. MSComm控件与Win32 API操作串口有何区别?

    MSComm控件与Win32 API操作串口有何区别? [问题点数:50分,结帖人shell_shell]   收藏帖子 回复 我是一个小兵,在战场上拼命!   结帖率 83.33% 我以前用MSCo ...

  8. win32串口编程

    翻译自:ms-help://MS.MSDNQTR.v80.chs/MS.MSDN.v80/MS.WIN32COM.v10.en/dnfiles/html/msdn_serial.htm 老外写的文章, ...

  9. Windows API串口编程详解

    (一)Windows API串口通信编程概述 Windows环境下的串口编程与DOS环境下的串口编程有很大不同.Windows环境下的编程的最大特征之一就是设备无关性,它通过设备驱动程序将Window ...

随机推荐

  1. loaded some nib but the view outlet was not set(转载)

    当使用 initWithNibName 函数, 并使用 由nib文件生成的ViewController 的view属性时候,遇到这个问题. //load loc.xib UIViewControlle ...

  2. Linux学习笔记之一及虚拟机的安装

    学习Linux基础入门 学习实验楼Linux基础入门--学习笔记系列博客 第一节 Linux系统简介 Linux就是一个操作系统,操作系统在计算机系统中包括系统调用和内核两层.在简单了解了Linux的 ...

  3. BFC 从了解到放弃

    最近工作中我突然产生了一个想法,就如我们人类面临的终极问题一般,我从哪里来?我到哪里去?在撸代码进行CSS布局的时候,我会去想,我为什么这么做?,为什么浮动的元素要用overflow?,为什么要用cl ...

  4. 一步一步学习IdentityServer3 (11) OAuth2

    OAuth中定义了四个Role 资源所有者:这里可以理解为一个用户 资源服务器:如同前面章节中的 Web站点或者WebApi 服务资源站点 客户端:这里是Client,如同Identityserver ...

  5. Cocos2d-x for Windows Phone 用法总结

    鉴于诺基亚(微软移动这个没人用的手机)开发者比较少,cocos2dx移植方面更是少的问题,总结一下WP8移植方面的资料,希望对大家有用,自己也当作笔记留念. 1.WP8方面有两种方式创建项目,Hell ...

  6. MySQL开发技巧

    MySQL基础表和数据 如何进行行列转换 行转列 场景:报表统计(sum()).汇总显示表数据:select * from score; 希望达到的效果 cross join SQL如下: selec ...

  7. C# 文件下载断点续传

    C# 文件下载断点续传的一个类 using System; using System.Collections.Generic; using System.Linq; using System.Text ...

  8. LoadRunner参数化时的中文乱码问题

    http://blog.sina.com.cn/s/blog_6cf205160100mdxi.html

  9. Kafka/Metaq设计思想学习笔记

    http://my.oschina.net/geecoodeer/blog/194829

  10. 自定义排序及Hadoop序列化

    自定义排序 将两列数据进行排序,第一列按照升序排列,当第一列相同时,第二列升序排列. 在map和reduce阶段进行排序时,比较的是k2.v2是不参与排序比较的.如果要想让v2也进行排序,需要把k2和 ...