题目链接

很容易写出\(O(n^2k)\)的DP方程。然后显然决策点是单调的,于是维护决策点就可以了。。

这个过程看代码或者别的博客吧我不写了。。(其实是忘了)

这样复杂度\(O(nk\log n)\)。但是在BZOJ T了=-=。

\(k\)可以带权二分优化到\(O(n\log k\log n)\)就能过了吧。

不想改了。

我特么学的是假的单调。。

又是zz错误浪费半下午(╯‵□′)╯︵┴─┴

辣鸡题还卡时间

不过就不过吧mmp

Upd: Codeforces 321E.Ciel and Gondolas上过了。1028ms 130224KB。。

//130968kb	3000ms
#include <cstdio>
#include <cctype>
#include <algorithm>
//#define gc() getchar()
#define MAXIN 5000000
#define gc() (SS==TT&&(TT=(SS=IN)+fread(IN,1,MAXIN,stdin),SS==TT)?EOF:*SS++)
const int N=4003; int n,K,A[N][N],sum[N][N],f[2][N],Now;
char IN[MAXIN],*SS=IN,*TT=IN;
struct Node{
int l,r,pos;//pos是区间[l,r]的最优转移点
}q[N]; inline int read()
{
int now=0;register char c=gc();
for(;!isdigit(c);c=gc());
for(;isdigit(c);now=now*10+c-'0',c=gc());
return now;
}
inline int Cost(int i,int p){//在i之前,分割p,p+1处
return f[Now][p]+sum[p+1][i];
}
inline int Find(Node t,int x)
{
int l=t.l, r=t.r, mid;
while(l<=r)//l==r时应再Check一次?
if(mid=l+r>>1, Cost(mid,x)<Cost(mid,t.pos)) r=mid-1;//!
else l=mid+1;
return l;
} int main()
{
n=read(),K=read();
for(int i=1; i<=n; ++i)
for(int j=1; j<=n; ++j) A[i][j]=A[i][j-1]+read();
for(int i=1; i<=n; ++i)
for(int j=i+1; j<=n; ++j)
sum[i][j]=sum[i][j-1]+A[j][j]-A[j][i-1];
for(int i=1; i<=n; ++i) f[1][i]=sum[1][i];
Now=1;
for(int j=1; j<K; ++j, Now^=1)
{
int h=1,t=1; q[1]=(Node){1,n,1};
for(int i=2; i<=n; ++i)
{
if(i>q[h].r) ++h;
f[Now^1][i]=Cost(i,q[h].pos);
if(Cost(n,i)<Cost(n,q[t].pos))//为什么要拿n比?不太明白。
{
while(h<=t && Cost(q[t].l,i)<Cost(q[t].l,q[t].pos)) --t;//队尾区间的l用i都比pos更优了,而决策点是单调的,所以[l,r]肯定都要不选pos而选i了
if(h>t) q[++t]=(Node){i,n,i};
else
{
int Pos=Find(q[t],i);
q[t].r=Pos-1, q[++t]=(Node){Pos,n,i};
}
}
}
}
printf("%d",f[Now][n]); return 0;
}

BZOJ.5311.贞鱼(DP 决策单调)的更多相关文章

  1. CF321E Ciel and Gondolas & BZOJ 5311 贞鱼

    一眼可以看出$O(kn^{2})$的$dp$方程,然后就不会了呜呜呜. 设$f_{i, j}$表示已经选到了第$i + 1$个数并且选了$j$段的最小代价,那么 $f_{i, j} = f_{p, j ...

  2. BZOJ_5311_贞鱼_决策单调性+带权二分

    BZOJ_5311_贞鱼_决策单调性+带权二分 Description 众所周知,贞鱼是一种高智商水生动物.不过他们到了陆地上智商会减半. 这不?他们遇到了大麻烦! n只贞鱼到陆地上乘车,现在有k辆汽 ...

  3. 【Codeforces 321E / BZOJ 5311】【DP凸优化】【单调队列】贞鱼

    目录 题意: 输入格式 输出格式 思路: DP凸优化的部分 单调队列转移的部分 坑点 代码 题意: 有n条超级大佬贞鱼站成一行,现在你需要使用恰好k辆车把它们全都运走.要求每辆车上的贞鱼在序列中都是连 ...

  4. Newnode's NOI(P?)模拟赛 第二题 dp决策单调优化

    其实直接暴力O(n3)DP+O2O(n^3)DP+O_2O(n3)DP+O2​优化能过- CODE O(n3)O(n^3)O(n3) 先来个O(n3)O(n^3)O(n3)暴力DP(开了O2O_2O2 ...

  5. 【BZOJ5311/CF321E】贞鱼/Ciel and Gondolas(动态规划,凸优化,决策单调性)

    [BZOJ5311/CF321E]贞鱼/Ciel and Gondolas(动态规划,凸优化,决策单调性) 题面 BZOJ CF 洛谷 辣鸡BZOJ卡常数!!!!!! 辣鸡BZOJ卡常数!!!!!! ...

  6. bzoj 4769: 超级贞鱼 -- 归并排序

    4769: 超级贞鱼 Time Limit: 1 Sec  Memory Limit: 128 MB Description 马达加斯加贞鱼是一种神奇的双脚贞鱼,它们把自己的智慧写在脚上——每只贞鱼的 ...

  7. BZOJ5311,CF321E 贞鱼

    题意 Problem 5311. -- 贞鱼 5311: 贞鱼 Time Limit: 3 Sec  Memory Limit: 162 MBSubmit: 677  Solved: 150[Subm ...

  8. 不失一般性和快捷性地判定决策单调(洛谷P1912 [NOI2009]诗人小G)(动态规划,决策单调性,单调队列)

    洛谷题目传送门 闲话 看完洛谷larryzhong巨佬的题解,蒟蒻一脸懵逼 如果哪年NOI(放心我这样的蒟蒻是去不了的)又来个决策单调性优化DP,那蒟蒻是不是会看都看不出来直接爆\(0\)?! 还是要 ...

  9. CF868 F. Yet Another Minimization Problem 决策单调优化 分治

    目录 题目链接 题解 代码 题目链接 CF868F. Yet Another Minimization Problem 题解 \(f_{i,j}=\min\limits_{k=1}^{i}\{f_{k ...

随机推荐

  1. 适配器在JavaScript中的体现

    适配器设计模式在JavaScript中非常有用,在处理跨浏览器兼容问题.整合多个第三方SDK的调用,都可以看到它的身影. 其实在日常开发中,很多时候会不经意间写出符合某种设计模式的代码,毕竟设计模式就 ...

  2. Vagrant 无法校验手动下载的 Homestead Box 版本

    起因 4年前电脑,配置不太好了,现有的 Homestead 运行起来太吃内存.在修改了 Homestead.yaml 文件里 memory 选项的内存配置为 1024 后,应用最新配置重启失败. 索性 ...

  3. aarch64_l2

    libfreehand-devel-0.1.1-5.fc26.aarch64.rpm 2017-05-23 07:16 26K fedora Mirroring Project libfreehand ...

  4. jQuery插件之ajaxFileUpload(异步上传图片并实时显示,并解决onchange后ajaxFileUpload失效问题)

    参考学习: 第一篇:http://www.cnblogs.com/kissdodog/archive/2012/12/15/2819025.html 第二篇:http://www.jb51.net/a ...

  5. 2018 ICPC 徐州网络赛

    2018 ICPC 徐州网络赛 A. Hard to prepare 题目描述:\(n\)个数围成一个环,每个数是\(0\)~\(2^k-1\),相邻两个数的同或值不为零,问方案数. solution ...

  6. 18 A GIF decoder: an exercise in Go interfaces 一个GIF解码器:go语言接口训练

    A GIF decoder: an exercise in Go interfaces  一个GIF解码器:go语言接口训练 25 May 2011 Introduction At the Googl ...

  7. SpringMVC 返回JSON数据的配置

    spring-mvc-config.xml(文件名称请视具体情况而定)配置文件: <!-- 启动Springmvc注解驱动 --> <mvc:annotation-driven> ...

  8. 激活Win10内置版Linux (ubuntu)

    微软自从14316版本后,就开始原生支持Linux  Bash命令行. 1.首先到系统设置——更新和安全——针对开发人员——选择开发者模式. 2.控制面板→程序和功能→启用或关闭Windows功能,勾 ...

  9. java基础70 负责静态的网页制作语言XML(网页知识)

    HTML:负责网页结构的CSS:负责网页的样式(美观)JavaScript:负责客户(浏览器)端与用户进行交互 1.HTML语言的特点 1.由标签组成    2.语法结构松散     3.大小写不区分 ...

  10. java基础24 线程、多线程及线程的生命周期(Thread)

    1.1.进程 正在执行的程序称作为一个进程.进程负责了内存空间的划分 疑问1:windows电脑称之为多任务的操作系统,那么Windows是同时运行多个应用程序呢? 从宏观的角度:windows确实在 ...