在官方tutorial的帮助下,我们已经使用了最简单的CNN用于Mnist的问题,而其实在这个过程中,主要的问题在于如何设置CNN网络,这和Caffe等框架的原理是一样的,但是tf的设置似乎更加简洁、方便,这其实完全类似于Caffe的python接口,但是由于框架底层的实现不一样,tf无论是在单机还是分布式设备上的实现效率都受到一致认可。

CNN网络中的卷积和池化层应该怎么设置呢?tf相应的函数是什么?具体的tutorial地址参见Tensorflow中文社区

  • 卷积(Convolution)
  1. conv2d: 一般卷积。函数原型:

    tf.nn.conv2d(input, filter, strides, padding, use_cudnn_on_gpu=None, name=None)

  2. depthwise_conv2d:深度卷积。

    tf.nn.depthwise_conv2d(input, filter, strides, padding, name=None)

  3. separable_conv2d: 深度可分离卷积。

    tf.nn.separable_conv2d(input, depthwise_filter, pointwise_filter, strides, padding, name=None)

上篇关于Mnist,我们使用的是conv2d,下面介绍一下这个函数。

第一个参数input:指需要做卷积的输入图像,它要求是一个Tensor,具有[batch, in_height, in_width, in_channels]这样的shape,具体含义是[训练时一个batch的图片数量, 图片高度, 图片宽度, 图像通道数],注意这是一个4维的Tensor,要求类型为float32和float64其中之一。

第二个参数filter:相当于CNN中的卷积核,它要求是一个Tensor,具有[filter_height, filter_width, in_channels, out_channels]这样的shape,具体含义是[卷积核的高度,卷积核的宽度,图像通道数,卷积核个数],要求类型与参数input相同,有一个地方需要注意,第三维in_channels,就是参数input的第四维。

第三个参数strides:卷积时在图像每一维的步长,这是一个一维的向量,长度为4,通常为[1,×,×,1],表示只在输入图中做卷积,而跟channel和batch无关,通常×是相同的。

第四个参数padding:string类型的量,只能是”SAME”,”VALID”其中之一,这个值决定了不同的卷积方式,“SAME”表示有padding的卷积,尤其在stride=[1,1,1,1]的情况下,输入和输出的tensor维度一样,这也正是在Mnist中采用的,这种也称为HALF padding,因为p=[k/2],向下取整。而“VALID”表示无padding,不在原始输入上加任何padding,直接卷积。

第五个参数use_cudnn_on_gpu:bool类型,是否使用cudnn加速,默认为true。

卷积的结果就是返回一个Tensor,这个输出,就是我们常说的feature map,feature map的维度取决于卷积和池化层,这和Caffe是类似的,那就是[batch,高度,宽度,通道数=卷积核个数]。

  • 池化Pooling
  1. avg_pool:平均池化。函数原型:

    tf.nn.avg_pool(value, ksize, strides, padding, name=None)

  2. max_pool:最大池化。函数原型: 

    tf.nn.max_pool(value, ksize, strides, padding, name=None)

  3. max_pool_with_argmax:计算池化区域中元素的最大值和该最大值所在的位置。函数原型:

    tf.nn.max_pool_with_argmax(input, ksize, strides, padding, Targmax=None, name=None)

Mnist中使用的是max_pool方式,其和卷积类似。

第一个参数value:池化的输入,池化层通常接在卷积层后面,所以输入通常是feature map,依然是[batch, height, width, channels]这样的shape。

第二个参数ksize:池化窗口的大小,取一个四维向量,一般是[1, height, width, 1],同理不在batch和channels上做池化,所以这两个维度设为了1,通常height=width。

第三个参数strides:和卷积类似,窗口在每一个维度上滑动的步长,一般也是[1, stride,stride, 1],步长为2,即为减半。

第四个参数padding:和卷积类似,可以取’VALID’ 或者’SAME’。

返回一个Tensor,类型不变,仍是feature map。其shape也是[batch, height, width, channels]这种形式。

tensorflow中的卷积和池化层(一)的更多相关文章

  1. tensorflow的卷积和池化层(二):记实践之cifar10

    在tensorflow中的卷积和池化层(一)和各种卷积类型Convolution这两篇博客中,主要讲解了卷积神经网络的核心层,同时也结合当下流行的Caffe和tf框架做了介绍,本篇博客将接着tenso ...

  2. tensorflow 1.0 学习:池化层(pooling)和全连接层(dense)

    池化层定义在 tensorflow/python/layers/pooling.py. 有最大值池化和均值池化. 1.tf.layers.max_pooling2d max_pooling2d( in ...

  3. tensorflow CNN 卷积神经网络中的卷积层和池化层的代码和效果图

    tensorflow CNN 卷积神经网络中的卷积层和池化层的代码和效果图 因为很多 demo 都比较复杂,专门抽出这两个函数,写的 demo. 更多教程:http://www.tensorflown ...

  4. 『TensorFlow』卷积层、池化层详解

    一.前向计算和反向传播数学过程讲解

  5. CNN中卷积层 池化层反向传播

    参考:https://blog.csdn.net/kyang624823/article/details/78633897 卷积层 池化层反向传播: 1,CNN的前向传播 a)对于卷积层,卷积核与输入 ...

  6. 【深度学习篇】--神经网络中的池化层和CNN架构模型

    一.前述 本文讲述池化层和经典神经网络中的架构模型. 二.池化Pooling 1.目标 降采样subsample,shrink(浓缩),减少计算负荷,减少内存使用,参数数量减少(也可防止过拟合)减少输 ...

  7. 基于深度学习和迁移学习的识花实践——利用 VGG16 的深度网络结构中的五轮卷积网络层和池化层,对每张图片得到一个 4096 维的特征向量,然后我们直接用这个特征向量替代原来的图片,再加若干层全连接的神经网络,对花朵数据集进行训练(属于模型迁移)

    基于深度学习和迁移学习的识花实践(转)   深度学习是人工智能领域近年来最火热的话题之一,但是对于个人来说,以往想要玩转深度学习除了要具备高超的编程技巧,还需要有海量的数据和强劲的硬件.不过 Tens ...

  8. TensorFlow 池化层

    在 TensorFlow 中使用池化层 在下面的练习中,你需要设定池化层的大小,strides,以及相应的 padding.你可以参考 tf.nn.max_pool().Padding 与卷积 pad ...

  9. Python3 卷积神经网络卷积层,池化层,全连接层前馈实现

    # -*- coding: utf-8 -*- """ Created on Sun Mar 4 09:21:41 2018 @author: markli " ...

随机推荐

  1. selenium获取新页面标签页(只弹出一个新页面的切换)

    selenium获取新页面标签页(只弹出一个新页面的切换) windows = driver.current_window_handle #定位当前页面句柄 all_handles = driver. ...

  2. ES6 学习1

    https://www.jianshu.com/p/287e0bb867ae 1,let表示变量.const表示常量.let和const都是块级作用域.一个在函数内部,一个在代码块内部:  const ...

  3. Android ComponentName的用法

    ComponentName(组件名称)是用来打开其他应用程序中的Activity或服务的. 用法: Intent it=new Intent(); it.setComponent(new Compon ...

  4. 半夜思考之查漏补缺, Spring 的 Bean 后处理器

    有一篇写的是容器后处理器, 这篇是 Bean 后处理器 , 我对这个 Bean 后处理器的理解就是一个 AOP 编程 . Bean 后处理器 : 是一种特殊的 Bean , 这种 Bean 不对外提供 ...

  5. Java Queue 专题

    关于java中的Queue,经常用到,做个总结 Queue是一种很常见的数据结构类型,在java里面Queue是一个接口,它只是定义了一个基本的Queue应该有哪些功能规约. (Java中的集合包括三 ...

  6. java与C++相比增加和缺少的特性--持续更新

    缺少的特性 java值类型中没有无符号数 java没有运算符重载语法 java中没有struct和union等用户自定义值类型 java中没有虚函数的概念,所有函数默认具有虚函数的特性 java采用单 ...

  7. JDBC数据库连接技术

    [学习笔记]JDBC数据库连接技术(Java Database Connectivity) 一.JDBC简介 Java是通过JDBC技术实现对各种数据库的访问的,JDBC是Java数据库连接技术的简称 ...

  8. MacBook设置终端颜色,补全忽略大小写,设置命令别名alias,设置vim,设置显示git分支

    1.启用终端颜色 修改配置文件 $ vim .bash_profile #enables colorin the terminal bash shell export export CLICOLOR= ...

  9. SrervletContext和文件下载

    ServletContext对象 生命周期(从生命周期可以看出这个是个全局对象) 项目启动的时候创建 项目关闭的时候销毁 概念:代表整个web应用,可以和程序的容器(服务器)来通信. 获取 通过req ...

  10. python之旅:函数对象、函数嵌套、名称空间与作用域、装饰器

    一 函数对象 一 函数是第一类对象,即函数可以当作数据传递 #1 可以被引用 #2 可以当作参数传递 #3 返回值可以是函数 #3 可以当作容器类型的元素 二 利用该特性,优雅的取代多分支的if de ...