P2144 [FJOI2007]轮状病毒

题目描述

轮状病毒有很多变种。许多轮状病毒都是由一个轮状基产生。一个\(n\)轮状基由圆环上\(n\)个不同的基原子和圆心的一个核原子构成。\(2\)个原子之间的边表示这\(2\)个原子之间的信息通道,如图\(1\)。

\(n\)轮状病毒的产生规律是在\(n\)轮状基中删除若干边,使各原子之间有唯一一条信息通道。例如,共有\(16\)个不同的\(3\)轮状病毒,如图\(2\)所示。

给定\(n(n\le100)\),编程计算有多少个不同的\(n\)轮状病毒。

输入输出格式

输入格式:

第一行有\(1\)个正整数\(n\)。

输出格式:

将编程计算出的不同的\(n\)轮状病毒数输出


发现题目要求求出看起来很有规律的无向图生成树个数,显然可以找一些规律/打表/递推之类的,但不妨采用比较暴力的方法,矩阵树定理。

然后发现事情并没有那么简单,如果用矩阵树定理暴力去做的话,你可以选择一些乱搞/手写高精度小数类之类的方法

而之前又说,这个图比较特殊,所以,我们可以研究一下基尔霍夫矩阵的行列式有没有什么比较特殊的求法,\(n+1(n>2)\)阶的基尔霍夫矩阵大概长这个样子

\[\begin{bmatrix}n&-1&-1&-1&-1&\cdots&-1&-1&-1\\-1&3&-1&0&0&\cdots&0&0&-1\\-1&-1&3&-1&0&\dots&0&0&0\\-1&0&-1&3&-1&\cdots&0&0&0\\\vdots&\vdots&\vdots&\vdots&\vdots&\ddots&\vdots&\vdots&\vdots\\-1&0&0&0&0&\cdots&-1&3&-1\\-1&-1&0&0&0&\cdots&0&-1&3\end{bmatrix}
\]

\(n\)阶主子式肯定是扔第一行第一列啊,因为我们想找行列式的递推规律,然后变成这样

\[\begin{bmatrix}3&-1&0&0&\cdots&0&0&-1\\-1&3&-1&0&\dots&0&0&0\\0&-1&3&-1&\cdots&0&0&0\\\vdots&\vdots&\vdots&\vdots&\ddots&\vdots&\vdots&\vdots\\0&0&0&0&\cdots&-1&3&-1\\-1&0&0&0&\cdots&0&-1&3\end{bmatrix}
\]

设这个矩阵为\(A_n\),那么\(n\)的答案就是\(\det A_n\),然后我们考虑求出这个矩阵的行列式

由“行列式等于它的任一行(列)的各元素与其对应的代数余子式乘积之和”

  • 余子式:在\(n\)阶行列式中,把元素\(a_{i,j}\)所在第\(i\)行和第\(j\)行划去后,留下的\(n-1\)阶行列式叫元素\(a_{i,j}\)的余子式,记做\(M_{i,j}\),定义代数余子式为\(A_{i,j}=(-1)^{i+j}M_{i,j}\)

我们可以扔第一行,因为\((1,n)\)和\((n,1)\)两个位置的东西看起来巨难受。

拆开第一行第一列得到

\[3\begin{vmatrix}3&-1&0&\dots&0&0&0\\-1&3&-1&\cdots&0&0&0\\\vdots&\vdots&\vdots&\ddots&\vdots&\vdots&\vdots\\0&0&0&\cdots&-1&3&-1\\0&0&0&\cdots&0&-1&3\end{vmatrix}
\]

这个看起来就可以递推的东西,设\(n-1\)阶的它为\(B_{n-1}\)。为了方便,以下\(A_n,B_n\)也指代行列式的值。

然后剩下有贡献的第一行第二列和第一行第\(n-1\)列,因为余子式的正负与\(n\)有关,不妨先设\(n\)为奇数,偶数的情况是一样的。

\[\begin{vmatrix}-1&-1&0&\dots&0&0&0\\0&3&-1&\cdots&0&0&0\\\vdots&\vdots&\vdots&\ddots&\vdots&\vdots&\vdots\\0&0&0&\cdots&-1&3&-1\\-1&0&0&\cdots&0&-1&3\end{vmatrix}
\]

这是拆了第一行第二列,没思路再拆,发现扔第一行第一列后是\(-B_{n-2}\),扔第\(n-1\)行第\(1\)列是主对角线全为\(-1\)的下三角,行列式的值为\(-1\),再乘上\((-1)^{n-1+1}(-1)\)还是\(-1\)

然后是第一行第\(n\)列

\[-\begin{vmatrix}-1&3&-1&0&\dots&0&0\\0&-1&3&-1&\cdots&0&0\\\vdots&\vdots&\vdots&\vdots&\ddots&\vdots&\vdots\\0&0&0&0&\cdots&-1&3\\-1&0&0&0&\cdots&0&-1\end{vmatrix}
\]

注意这里是负的,因为\(n\)是奇数。然后还是拆第一列,发现答案还是\(-B_{n-2}\)和\(-1\)

于是我们有\(A_n=3B_{n-1}-2B_{n-2}-2\)

以同样的方法对\(B\)做讨论,可以得到\(B_n=3B_{n-1}-B_{n-2}\)

然后联立一下得到\(A_{n}=3A_{n-1}-A_{n-2}+2\),带入到\(n\le2\)发现式子仍然成立,然后直接递推+高精即可。


Code:

  1. #include <cstdio>
  2. #include <cstring>
  3. const int N=110;
  4. struct bignum
  5. {
  6. int num[N];
  7. bignum(){memset(num,0,sizeof(num));}
  8. bignum friend operator +(bignum n1,bignum n2)
  9. {
  10. int len=n1.num[0]>n2.num[0]?n1.num[0]:n2.num[0];
  11. for(int i=1;i<=len;i++)
  12. {
  13. n1.num[i]+=n2.num[i];
  14. n1.num[i+1]+=n1.num[i]/10;
  15. n1.num[i]%=10;
  16. }
  17. if(n1.num[len+1]) n1.num[0]=len+1;
  18. else n1.num[0]=len;
  19. return n1;
  20. }
  21. bignum friend operator -(bignum n1,bignum n2)
  22. {
  23. int len=n1.num[0];
  24. for(int i=1;i<=len;i++)
  25. {
  26. n1.num[i]-=n2.num[i];
  27. if(n1.num[i]<0)
  28. n1.num[i]+=10,n1.num[i+1]--;
  29. }
  30. if(n1.num[len]) n1.num[0]=len;
  31. else n1.num[0]=len-1;
  32. return n1;
  33. }
  34. }ans[N],two;
  35. int main()
  36. {
  37. int n;scanf("%d",&n);
  38. ans[1].num[0]=1,ans[1].num[1]=1,ans[2].num[0]=1,ans[2].num[1]=5,two.num[0]=1,two.num[1]=2;
  39. for(int i=3;i<=n;i++) ans[i]=ans[i-1]+ans[i-1]+ans[i-1]-ans[i-2]+two;
  40. for(int i=ans[n].num[0];i;i--) printf("%d",ans[n].num[i]);
  41. return 0;
  42. }

2018.12.20

洛谷 P2144 [FJOI2007]轮状病毒的更多相关文章

  1. 洛谷P2144 [FJOI2007]轮状病毒

    可以用Matrix-Tree定理,然而被卡精度 #include<cstdio> #include<cstdlib> #include<algorithm> #in ...

  2. 洛谷 P2144 BZOJ 1003 [FJOI2007]轮状病毒

    题目描述 轮状病毒有很多变种.许多轮状病毒都是由一个轮状基产生.一个n轮状基由圆环上n个不同的基原子和圆心的一个核原子构成.2个原子之间的边表示这2个原子之间的信息通道,如图1. n轮状病毒的产生规律 ...

  3. P2144 [FJOI2007]轮状病毒

    题目描述 轮状病毒有很多变种.许多轮状病毒都是由一个轮状基产生.一个n轮状基由圆环上n个不同的基原子和圆心的一个核原子构成.2个原子之间的边表示这2个原子之间的信息通道,如图1. n轮状病毒的产生规律 ...

  4. luogu P2144 [FJOI2007]轮状病毒

    传送门 随便摸一发题解算了 打表找规律 前五个答案是 1 5 16 45 121 其实是 1^2 3^2-4 4^2 7^2-4 11^2 底数就是类似于斐波那契数列,还有偶数项要减4 #includ ...

  5. 【洛谷】2144:[FJOI2007]轮状病毒【高精度】【数学推导??(找规律)】

    P2144 [FJOI2007]轮状病毒 题目描述 轮状病毒有很多变种.许多轮状病毒都是由一个轮状基产生.一个n轮状基由圆环上n个不同的基原子和圆心的一个核原子构成.2个原子之间的边表示这2个原子之间 ...

  6. 洛谷1640 bzoj1854游戏 匈牙利就是又短又快

    bzoj炸了,靠离线版题目做了两道(过过样例什么的还是轻松的)但是交不了,正巧洛谷有个"大牛分站",就转回洛谷做题了 水题先行,一道傻逼匈牙利 其实本来的思路是搜索然后发现写出来类 ...

  7. 洛谷P1352 codevs1380 没有上司的舞会——S.B.S.

    没有上司的舞会  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 钻石 Diamond       题目描述 Description Ural大学有N个职员,编号为1~N.他们有 ...

  8. 洛谷P1108 低价购买[DP | LIS方案数]

    题目描述 “低价购买”这条建议是在奶牛股票市场取得成功的一半规则.要想被认为是伟大的投资者,你必须遵循以下的问题建议:“低价购买:再低价购买”.每次你购买一支股票,你必须用低于你上次购买它的价格购买它 ...

  9. 洛谷 P2701 [USACO5.3]巨大的牛棚Big Barn Label:二维数组前缀和 你够了 这次我用DP

    题目背景 (USACO 5.3.4) 题目描述 农夫约翰想要在他的正方形农场上建造一座正方形大牛棚.他讨厌在他的农场中砍树,想找一个能够让他在空旷无树的地方修建牛棚的地方.我们假定,他的农场划分成 N ...

随机推荐

  1. 廖雪峰git教程学习笔记

    对git来说,没有消息就是最好的消息 使用 git init 把当前目录变为git仓库 要在仓库里加入文件,先在仓库目录新建这个文件后,比如新建一个文件xiaobai.txt,内容为: 在命令行里输入 ...

  2. MD5加密简单使用

    MD5加密简单使用规则 先写一个加密的工具类吧! public class MD5Util { public static String encoderPassword(String s) throw ...

  3. mysql安装(rpm)

    mysql安装(rpm) 1.卸载系统自带的 mariadb-lib [root@centos-linux ~]# rpm -qa|grep mariadb mariadb-libs-5.5.44-2 ...

  4. 小刘的深度学习---CNN

    前言: 前段时间我在树莓派上通过KNN,SVM等机器学习的算法实现了门派识别的项目,所用到的数据集是经典的MNIST.可能是因为手写数字与印刷体存在一些区别,识别率并是很不高.基于这样的情况,我打算在 ...

  5. numastat命令详解

    基础命令学习目录 作者:[吴业亮]博客:http://blog.csdn.net/wylfengyujiancheng一.系统架构的演进从SMP到NUMA1.SMP(Symmetric Multi-P ...

  6. OGG FOR BIGDATA 安装(修正)

    参考:http://docs.oracle.com/goldengate/bd1221/gg-bd/GADBD/toc.htm 一.环境介绍 源:centos6.5 oracl e 11.20.4   ...

  7. gulp-babel 阻止了js文件编译的进程?

    现象 :   编译打包的js没有输出到目标文件夹里,只是单单的生成了一个目标目录,目录里没有文件 解决方法:gulp-babel ^8.0.0 使用了 ^7.0.1的 依赖插件.统一gulp-babe ...

  8. bootstrap轮播图不能显示左右箭头

    引入font文件夹即可 原文 :http://www.imooc.com/qadetail/64277

  9. 20162328蔡文琛 week09 大二

    20162328蔡文琛 大二week09 教材学习内容总结 堆是一棵完全二叉树,其中每个元素大于等于其所有子节点的值. 向堆中添加一个元素的方法是,首先将这个元素添加为叶节点然后将其向上移动到合适的位 ...

  10. mysql hibernate 关于默认值

    字段的默认值 写 NOT NULL DEFAULT 0 等等 一直不行, 算了  干脆在创建的时候 在代码set好了 版权声明:本文为博主原创文章,未经博主允许不得转载.