题目大意:有$n$个球,每一次取一个球然后放回,问期望多少次取遍所有球

题解:令$f_i$表示已经取了$i$种球,还要取的次数的期望。$f_i=\dfrac in(f_i+1)+\dfrac{n-i}n(f_{i+1}+1),f_n=0$

解个方程可得$f_i=\dfrac n{n-i}+f_{i+1}$,所有答案为$n\sum\limits_{i=1}^n\dfrac 1i$

卡点:

C++ Code:

#include <cstdio>
#define maxn 10000010
const int mod = 20040313;
#define mul(x, y) static_cast<long long> (x) * (y) % mod inline void reduce(int &x) { x += x >> 31 & mod; } int n, ans;
int inv[maxn];
int main() {
scanf("%d", &n);
inv[0] = inv[1] = ans = 1;
for (int i = 2; i <= n; ++i) {
inv[i] = mul(mod - mod / i, inv[mod % i]);
reduce(ans += inv[i] - mod);
}
printf("%lld\n", mul(ans, n));
return 0;
}

  

[洛谷P5081]Tweetuzki 爱取球的更多相关文章

  1. 【期望】【P5081】Tweetuzki 爱取球

    Description Tweetuzki 有一个袋子,袋子中有 \(N\) 个无差别的球.Tweetuzki 每次随机取出一个球后放回.求取遍所有球的期望次数. 取遍是指,袋子中所有球都被取出来过至 ...

  2. 【洛谷2113】看球泡妹子 DP背包

    看球泡妹子 题目背景 2014年巴西世界杯开幕了,现在满城皆是世界杯,商家们利用它大赚一笔,小明和小红也借此机会增进感情. 题目描述 本届世界杯共有\(N\)支球队,\(M\)场比赛.男球迷小明喜欢看 ...

  3. 洛谷——P1655 小朋友的球

    P1655 小朋友的球 题目描述 @发源于 小朋友最近特别喜欢球.有一天他脑子抽了,从口袋里拿出了N个不同的球,想把它们放到M个相同的盒子里,并且要求每个盒子中至少要有一个球,他好奇有几种放法,于是尝 ...

  4. 洛谷——P1287 盒子与球

    P1287 盒子与球 题目描述 现有r个互不相同的盒子和n个互不相同的球,要将这n个球放入r个盒子中,且不允许有空盒子.问有多少种方法? 例如:有2个不同的盒子(分别编为1号和2号)和3个不同的球(分 ...

  5. 洛谷 P1655 小朋友的球

    题目描述 @发源于 小朋友最近特别喜欢球.有一天他脑子抽了,从口袋里拿出了N个不同的球,想把它们放到M个相同的盒子里,并且要求每个盒子中至少要有一个球,他好奇有几种放法,于是尝试编程实现,但由于他天天 ...

  6. 背包DP【洛谷P2113】 看球泡妹子

    P2113 看球泡妹子 题目背景 2014年巴西世界杯开幕了,现在满城皆是世界杯,商家们利用它大赚一笔,小明和小红也借此机会增进感情. 题目描述 本届世界杯共有N支球队,M场比赛.男球迷小明喜欢看比赛 ...

  7. 洛谷P1655 小朋友的球(Stirling数)

    P1655 小朋友的球 题目描述 @发源于 小朋友最近特别喜欢球.有一天他脑子抽了,从口袋里拿出了N个不同的球,想把它们放到M个相同的盒子里,并且要求每个盒子中至少要有一个球,他好奇有几种放法,于是尝 ...

  8. 洛谷 P1287 盒子与球

    P1287 盒子与球 题目描述 现有r个互不相同的盒子和n个互不相同的球,要将这n个球放入r个盒子中,且不允许有空盒子.问有多少种方法? 例如:有2个不同的盒子(分别编为1号和2号)和3个不同的球(分 ...

  9. 洛谷 P5078 Tweetuzki 爱军训

    题目连接 很明显,1e6的范围,要么nlgn要么O(n) nlgn的话可能会想到借助一些数据结构,我并没有想到这种做法 对于这种题,O(n)的做法要么是线性递推,要么就应该是贪心了 考虑这道题我们怎么 ...

随机推荐

  1. Genymotion模拟器安装问题及解决(启动失败,模拟器不能联网)

    安装Genymotion模拟器安装后启动不了,报错: 百度的解决方法是打开VMVBirtualox选中自己的设备点击设置—常规—将版本设置为图中箭头所指的: 但是我这样做的时候发现我的下拉列表中没有6 ...

  2. RabbitMQ入门:主题路由器(Topic Exchange)

    上一篇博文中,我们使用direct exchange 代替了fanout exchange,这次我们来看下topic exchange. 一.Topic Exchange介绍 topic exchan ...

  3. 前端常见算法面试题之 - 重建二叉树[JavaScript解法]

    题目描述 输入某二叉树的前序遍历和中序遍历的结果,请重建出该二叉树.假设输入的前序遍历和中序遍历的结果中都不含重复的数字.例如输入前序遍历序列[1,2,4,7,3,5,6,8],和中序遍历序列[4,7 ...

  4. 互联网校招面试必备——Java多线程

    本文首发于我的个人博客:尾尾部落 本文是我刷了几十篇一线互联网校招java后端开发岗位的面经后总结的多线程相关题目,虽然有点小长,但是面试前看一看,相信能帮你轻松啃下多线程这块大骨头. 什么是进程,什 ...

  5. c++ getline()和get()的区别

    1.方法get(char &)和get(void)提供不跳过空白的单字符输入功能:2.函数get(char * , int , char)和getline(char * , int , cha ...

  6. centos 切换用户显示bash-4.2$,不显示用户名路径的问题

    原文链接: http://blog.csdn.net/testcs_dn/article/details/70482468

  7. maven学习资料(三)

    两个项目聚合到一个项目中: .

  8. Java第二次实验20135204

    一.实验过程: 1.先创建一个学号命名的文档: 2.一个百分制成绩转化为等级: 3.新建一个包,另一个测试: 4.打开UML,建模软件umbrello进行建模: 相关程序: 5.我的保存: 二.遇到的 ...

  9. JavaScript实现大整数减法

    继上一篇博文写了大整数加法之后,我又模拟上篇博文的算法,自己实现了大整数减法. 大整数减法相对于加法来说,稍微复杂一点.由于要考虑一些情况: 1. 两个数相减,可能会出现结果为正.负和0三种情况: 2 ...

  10. jsp九大内置对象之session和application

    session和application 用的都是特别多尤其是application,但是想全面学习一下内置对象所以都了解一下. session又被称为是会话生存期是用户进入浏览器到关闭浏览器的期间.s ...