感觉这种构造题好妙啊,可我就是想不到诶。

给出一张无自环的有向图,回答一个独立集,使得图中任意一点都可以被独立集中的某一点两步之内走到。

具体构造方案如下:

  1. 下标从小到大枚举点,如果该点没有任何标记,则将其标记为$-1$,即答案的候选点,并把它能一步走到的未访问的点标记为$1$,即不会成为答案的点。
  2. 下标从大到小进行第二次枚举,如果该点被标为$-1$并且没有被丢弃,则选则该点,并把它能一步走到的点丢弃。

我们来考虑它的正确性:

显然它是一个独立集。唯一的问题在与它有可能出现两个同为$-1$的点相连(事实上他们组成的是一个$Dag$),这时注意到有出边的那个点的标号一定比较大,我们在计算答案时一定会先选这个点,然后就不会选有入边的那个点了。

每个点都能被两步内走到。如果它是被标为$-1$的点却不在答案中,那一定存在一个$-1$点能一步到达它,由上述可知。如果它是一个$1$点,那一定有一个$-1$点与它直接相连,两步内就一定能走到了。

#include <cstdio>
#include <vector> const int N = ; int n, m, vis[N], usd[N];
std::vector<int> g[N], ans; int main() {
scanf("%d%d", &n, &m);
for (int i = , x, y; i <= m; ++i) {
scanf("%d%d", &x, &y);
g[x].push_back(y);
}
for (int i = ; i <= n; ++i) {
if (vis[i] != ) continue;
vis[i] = -;
for (int v : g[i]) if (vis[v] == ) vis[v] = ;
}
for (int i = n; i >= ; --i) {
if (vis[i] != - || usd[i]) continue;
ans.push_back(i);
for (int v : g[i]) usd[v] = ;
}
printf("%lu\n", ans.size());
for (int v : ans) printf("%d ", v); return ;
}

【Cf #503 C】Sergey's problem(有趣的构造)的更多相关文章

  1. CF1019C Sergey's problem (图上构造)

    题目大意:给你一个有向连通图,让你找出一个点集,保证点集内的点之间没有直接连边,且集合中存在一点,到一个 非点集中的点的距离小于等于2 思路很清奇 首先编号从小到大遍历每个点,如果这个点没有被访问过, ...

  2. Codeforces Round #503 (by SIS, Div. 2) E. Sergey's problem

    E. Sergey's problem [题目描述] 给出一个n个点m条边的有向图,需要找到一个集合使得1.集合中的各点之间无无边相连2.集合外的点到集合内的点的最小距离小于等于2. [算法] 官方题 ...

  3. CF #296 (Div. 1) B. Clique Problem 贪心(构造)

    B. Clique Problem time limit per test 2 seconds memory limit per test 256 megabytes input standard i ...

  4. 【Cf #503 B】The hat(二分)

    为什么Cf上所有的交互题都是$binary \; Search$... 把序列分成前后两个相等的部分,每一个都可以看成一条斜率为正负$1$的折线.我们把他们放在一起,显然,当折线的交点的横坐标为整数时 ...

  5. CF 990C. Bracket Sequences Concatenation Problem【栈/括号匹配】

    [链接]:CF [题意]: 给出n个字符串,保证只包含'('和')',求从中取2个字符串链接后形成正确的括号序列的方案数(每个串都可以重复使用)(像'()()'和'(())'这样的都是合法的,像')( ...

  6. Codeforces 1019C Sergey's problem 构造

    原文链接https://www.cnblogs.com/zhouzhendong/p/CF1019C.html 题目传送门 - CF1019C 题意 给定一个有 $n$ 个节点 . $m$ 条边的有向 ...

  7. [CF1019C]Sergey's problem[构造]

    题意 找出一个集合 \(Q\),使得其中的点两两之间没有连边,且集合中的点可以走不超过两步到达其他所有不在集合中的点.输出任意一组解. \(n\leq 10^6\) 分析 考虑构造,先从 \(1\) ...

  8. 1019C Sergey's problem(思维)

    题意: 找出来一个点集S  使得S中的点不能互相通过一步到达 并且S中的点 可以在小于等于2的步数下到达所有的点 要父结点 不要子结点 这样就求出来一个点集S‘  而S'中可能存在 v -> u ...

  9. Sergey's problem CodeForces - 1019C (图论,构造,神题)

    链接 大意: 给定有向图, 求选择一个点集$S$, 使得$S$任意两点不相连, 且对于不属于$S$的任意点$x$, 均存在$S$中的点$y$, 使得$d(x,y)<=2$, $d(x,y)$为从 ...

随机推荐

  1. PHP核心技术——接口

    接口: 接口这样描述自己:对于实现我的所有类,看起来都应该像我现在这个样子 接口含义:采用一个特定接口的所有代码都知道对于那个接口会调用什么方法. interface mobile{ public f ...

  2. 【坚持】Selenium+Python学习记录 DAY8

    2018/05/ 28 [来源:菜鸟教程](http://www.runoob.com/python3/python3-examples.html) 继续敲类相关的代码 #No.1 class peo ...

  3. Hyperledger Fabric CA User’s Guide——CA用户指南(一)

    Fabric CA用户指南 Hyperledger Fabric CA是一种用于Hyperledger Fabric的认证机构(CA). 它提供了如下特性: 登记身份(注册ID),或者连接到作为用户注 ...

  4. 切换nPar或vPar的启动模式

    在EFI Shell中执行vparconfig即可随意切换vpar和npar模式 该命令在\EFI\HPUX目录下 vparconfig        显示当前的模式 vparconfig reboo ...

  5. redis使用Jackson2JsonRedisSerializer序列化问题

    一.spring boot 集成Redis方法 依赖 <!--redis--> <dependency> <groupId>org.springframework. ...

  6. 我眼中的PD(产品狗)

    以下内容可能引起您的不适(前方高能),请先移步科普: 产品经理为什么会存在? 本猿 -> web程序属 -> 前端开发种,从大森林迁徙到了小草原: 小草原物种稀缺,除了 程序猿,很难见到诸 ...

  7. 阿里云oracle启动失败

    1.监听启动失败: 将$ORACLE_HOME/network/admin 中的listener.ora中的主机名改为localhost 2.sqlplus中startup启动失败 ,出现ORA-00 ...

  8. Notes of Daily Scrum Meeting(11.5)

    Notes of Daily Scrum Meeting(11.5) 今天是我们学习学长代码,同时学习安卓语言的第三天.我们和学长沟通了一下,仔细讨论后得出一个结论,学长在 IOS平台上的代码可以借鉴 ...

  9. Scrum Meeting 10.26

    1.会议内容 姓名 今日任务 明日任务 预估时间(h) 徐越 学习服务器配置 配置SQLserver 4 卞忠昊 阅读代码 找上届代码的bug 3 武鑫 查阅资料 查阅资料,各种app的界面设计 3 ...

  10. C++:构造函数2——拷贝构造函数

     前言:拷贝构造函数是C++中的重点之一,在这里对其知识进行一个简单的总结. 一.什么是拷贝构造函数 在C++中,对于内置类型的变量来说,在其创建的过程中用同类型的另一个变量来初始化它是完全可以的,如 ...