算法

古埃及以前创造出灿烂的人类文明,他们的分数表示却非常令人不解。古埃及喜欢把一个分数分解为类似: 1/a + 1/b 的格式。

这里,a 和 b 必须是不同的两个整数,分子必须为 1

比方,2/15 一共同拥有 4 种不同的分解法(姑且称为埃及分解法):

1/8 + 1/120

1/9 + 1/45

1/10 + 1/30

1/12 + 1/20

那么, 2/45 一共同拥有多少个不同的埃及分解呢(满足加法交换律的算同种分解)?

这道题看似困难实则简单,仅仅用在给定数分母的左右側各设置一个游标并向两边滑动就可以。

感谢小小酥的提示。

import java.util.ArrayList;
import java.util.List; public class H3 {
public static void main(String[] args) {
int deno = 45;//分母
List<String> res = new ArrayList<>();
for(int i = deno-1; i>(deno-1)/2; i--) {//左側的游标
for(int j= deno+1; 2*i*j<=i*deno+j*deno; j++) {//右側的游标,循环条件是左右两个数的和(1/i+1/j)大于等于给定数(2/45)
if(2*i*j==i*deno+j*deno) {
res.add("1/"+i+"+"+"1/"+j);
}
}
}
//注:这里游标是不须要回溯的,大家能够想一下为什么
for(String s : res) {
System.out.println(s);
}
}
}

埃及分解:将2/n分解成为1/x+1/y的格式的更多相关文章

  1. 机器学习中的矩阵方法03:QR 分解

    1. QR 分解的形式 QR 分解是把矩阵分解成一个正交矩阵与一个上三角矩阵的积.QR 分解经常用来解线性最小二乘法问题.QR 分解也是特定特征值算法即QR算法的基础.用图可以将分解形象地表示成: 其 ...

  2. matlab之矩阵分解

    矩阵分解 矩阵分解 (decomposition, factorization)是将矩阵拆解为数个矩阵的乘积. 1.三角分解法: 要求原矩阵为方阵,将之分解成一个上三角形矩阵(或是排列(permute ...

  3. IOS 视频分解图片、图片合成视频

    在IOS视频处理中,视频分解图片和图片合成视频是IOS视频处理中经常遇到的问题,这篇博客就这两个部分对IOS视频图像的相互转换做一下分析. (1)视频分解图片 这里视频分解图片使用的是AVAssetI ...

  4. 特征值分解,奇异值分解(SVD)

    特征值分解和奇异值分解在机器学习领域都是属于满地可见的方法.两者有着很紧密的关系,我在接下来会谈到,特征值分解和奇异值分解的目的都是一样,就是提取出一个矩阵最重要的特征. 1. 特征值: 如果说一个向 ...

  5. 实Schur分解

        前面已经说过LU,Cholesky和QR分解,这次介绍的是实Schur分解.对这个分解的定义是任意一个矩阵A,可有如下形式的分解:               U*A*U' = B;其中B是拟 ...

  6. QR分解

        从矩阵分解的角度来看,LU和Cholesky分解目标在于将矩阵转化为三角矩阵的乘积,所以在LAPACK种对应的名称是trf(Triangular Factorization).QR分解的目的在 ...

  7. SVD神秘值分解

    SVD分解 SVD分解是LSA的数学基础,本文是我的LSA学习笔记的一部分,之所以单独拿出来,是由于SVD能够说是LSA的基础,要理解LSA必须了解SVD,因此将LSA笔记的SVD一节单独作为一篇文章 ...

  8. SVD分解技术数学解释

    SVD分解 SVD分解是LSA的数学基础,本文是我的LSA学习笔记的一部分,之所以单独拿出来,是因为SVD可以说是LSA的基础,要理解LSA必须了解SVD,因此将LSA笔记的SVD一节单独作为一篇文章 ...

  9. SVD分解技术详解

    版权声明: 本文由LeftNotEasy发布于http://leftnoteasy.cnblogs.com, 本文可以被全部的转载或者部分使用,但请注明出处,如果有问题,请联系wheeleast@gm ...

随机推荐

  1. 无需编译app切换线上、测试环境

    在咱们测试过程中,经常需要切换测试环境和线上环境.大致有如下几个方案. 一.服务器地址编译到app中 此种方式需要在代码里保存两套配置,一套指向线上,一套指向测试.通过编译参数分别生成测试包.线上包. ...

  2. 练习题 --- 10种Xpath定位

    写出10种不同的Xpath定位语法

  3. 开发者常用的 Sublime Text 3 插件

    1.官网下载 Sublime Text 3 (已有安装包的,请忽略) Sublime Text 官网下载地址 : http://www.sublimetext.com/ 2.打开 Sublime Te ...

  4. 【[国家集训队]小Z的袜子】

    对于L,R的询问.设其中颜色为x,y,z的袜子的个数为a,b,c...那么答案即为(a*(a-1)/2+b*(b-1)/2+c*(c-1)/2....)/((R-L+1)*(R-L)/2)化简得:(a ...

  5. mysql数据库查找类型不匹配

    无意中看到10级学长的博客,提到了mysql数据库类型查找不匹配的问题,博客地址是:卢俊达 . 数据库中建表中会对每个属性进行类型划分,然后在查找数据库select时: MySQL 的文档 (Type ...

  6. python2.7

    python2.7支持win32.win64 下载地址:http://pan.baidu.com/s/1dE39eQ9 初学,附一个牛人的python教程地址:http://www.liaoxuefe ...

  7. 一步一步学习IdentityServer3 (8)

    IdentityServer3结合Hangfire及Cookies中间件实现授权 Idr3数据库Token过期管理 GlobalConfiguration.Configuration.UseSqlSe ...

  8. hiho 1227 找到一个恰好包含n个点的圆 (2015北京网赛 A题)

    平面上有m个点,要从这m个点当中找出n个点,使得包含这n个点的圆的半径(圆心为n个点当中的某一点且半径为整数)最小,同时保证圆周上没有点. n > m 时要输出-1 样例输入43 2 0 0 1 ...

  9. PHP session 写入数据库中的方法

    首先解释下为什么要把session 写到数据库中呢,session 一般默认是以文件的形式放在php.ini 配置的目录中的, 如果你的网站实现了多台服务器负载均衡,这样用户访问你的网站,可能进入的服 ...

  10. 面试题49:把字符串转换成整数(atoi)

    需要考虑的问题都已在程序中注释 bool isValid; int StrToInt(const char* str) { isValid = false; //不合法情形1:空指针 if (str ...