“P=NP?” 通常被认为是计算机科学最重要的问题。有一个叫Clay Math的研究所,甚至悬赏 100 万美元给解决它的人。可是我今天要告诉你的是,这个问题其实是不存在的,它根本不需要解决。
我并不是第一个这样认为的人。在很早的时候就有个数学家毫不客气的指出,P=NP? 是个愚蠢的问题,并且为了嘲笑它,专门在愚人节写了一篇“论文”,称自己证明了
P=NP。我身边有一些非常聪明的人,他们基本也都不把这问题当回事。如果我对他们讲这些东西,恐怕是 TOO
OLD。可是我发现国内的计算机专业学生,提到这个问题总是奉为神圣,一点玩笑也开不得,所以我打算在这里科普一下。
这是一个不大好解释的问题。首先,你要搞清楚什么是“P=NP?”
为此,你必须先了解一下什么是“算法复杂度”。为此,你又必须先了解什么是“算法”。
你可以简单的把“算法”想象成一台机器,就跟绞肉机似的。你给它一些“输入”,它就给你一些“输出”。比如,绞肉机的输入是肉末,输出是肉渣。牛的输入是草,输出是奶(或者牛米田共)。“加法器”的输入是两个整数,输出是这两个整数的和。“算法理论”所讨论的问题,就是如何设计这些机器,让它们更加有效的工作。就像是说如何培育出优质的奶牛,吃进相同数量的草,更快的产出更多的奶。
通常所谓的“计算问题”,都需要算法经过一定时间的工作(也叫“计算”),才能得到结果。计算所需要的时间,往往跟输入的大小有关系。你的牛吃的草越多,它就需要越长时间,才能把草都变成奶。这种草和奶的转换速度,通常被叫做“算法复杂度”。
算法复杂度通常被表示为一个函数 f(n),其中 n
是输入的大小。这个函数的值,通常是某种资源的需求量,比如时间或者空间。比如,如果你的算法时间复杂度为
n2,那么当输入10个东西的时候,它需要 100 个单元的时间才能完成计算。当输入 100 个东西的时候,它需要
10000 个单元的时间才能完成。当输入 1000 个数据的时候,它需要 1000000
个单元的时间。简单吧。
所谓的“P时间”,就是“Polynomial
time”,多项式时间。简而言之,就是说这个复杂度函数 f(n)
是一个多项式。多项式你该知道是什么吧?不知道的话就翻一下中学数学课本。
“P=NP?”中的“P”,就是指所有这些复杂度为多项式的算法的“集合”,也就是“所有”的复杂度为多项式的算法。为了简要的描述以下的内容,我定义一些术语:
“f(n) 时间算法” = “能够在 f(n)
时间之内,解决某个问题的算法”
当 f(n) 是个多项式(比如
n2)的时候,这就是“多项式时间算法”(P 时间算法)。当 f(n) 是个指数函数(比如
2n)的时候,这就是“指数时间算法”(EXPTIME 算法)。很多人认为 NP 问题就是需要指数时间的问题,而
NP 跟 EXPTIME,其实是风马牛不相及的。很显然,P 不等于 EXPTIME,但是 P 是否等于
NP,却没有一个结论。
现在我来解释一下什么是
NP。通常的计算机都是确定性(deterministic)的,它们在同一个时刻只能有一种行为。如果用程序来表示,那么它们遇到一个条件判断(分支)的时候,只能一次探索其中一条路径。比如:
if (x == 0) {
 
one();
} else {
 
two();
}
在这里,根据 x 的值是否为零,one() 和 two()
这两个操作,只有一个会发生。
然而,有人幻想出来一种机器,叫做“非确定性计算机”(nondeterministic
computer),它可以同时运行这程序的两个分支,one() 和 two()。这有什么用处呢?它的用处就在于,当你不知道 x
的大小的时候,根据 one() 和 two() 是否“运行成功”,你可以推断出 x 是否为零。
这种非确定性的计算机,在“计算理论”里面叫做“非确定性图灵机”。与之相对的就是“确定性图灵机”,也就是通常所谓的“计算机”。其实,“图灵机”这名字在这里完全无关紧要。你只需要知道,非确定性的计算机可以同时探索多种可能性。
这不是普通的“并行计算”,因为每当遇到一个分支点,非确定性计算机就会产生新的计算单元,用以同时探索这些路径。这机器就像有“分身术”一样。当这种分支点存在于循环(或者递归)里面的时候,它就会反复的产生新的计算单元,新的计算单元又产生更多的计算单元,就跟细胞分裂一样。一般的计算机都没有这种“超能力”,它们只有固定数目的计算单元。所以他们只能先探索一条路径,失败之后,再回过头来探索另外一条。所以它们似乎要多花一些时间才能得到结果。
到这里,基本的概念都有了定义,于是我们可以圆满的给出 P 和
NP 的定义。
P 和 NP
是这样两个“问题的集合”:
  P
 =  
“确定性计算机”能够在“多项式时间”解决的所有问题
  NP =
“非确定性计算机”能够在“多项式时间”解决的所有问题
(注意它们的区别,仅在于“确定性”或者是“非确定性”。)
定义完毕。现在回到对“P=NP?”问题的讨论。
“P=NP?”问题的目标,就是想要知道 P 和 NP
这两个集合是否相等。为了证明两个集合(A 和 B)相等,一般都要证明两个方向:
1. A 包含 B
2. B 包含 A
你也许已经看出来了,NP 肯定包含了
P。因为任何一个非确定性机器,都能被当成一个确定性的机器来用。你只要不使用它的“超能力”,在每个分支点只探索一条路径就行。所以“P=NP?”问题的关键,就在于
P 是否也包含了
NP。也就是说,对于所有的非确定性多项式时间算法能解决的问题(NP),能否找到确定性的多项式时间算法。
首先我们来细看一下什么是多项式时间(Polynomial
time)。我们都知道,n2是多项式,n1000000也是多项式。多项式与多项式之间,却有天壤之别。把解决问题所需要的时间,用“多项式”这么笼统的概念来描述,其实是非常不准确的做法。在实际的大规模应用中,n2的算法都嫌慢。能找到“多项式时间”的算法,其实根本不能说明问题。
对此理论家们喜欢说,就算再大的多项式(比如
n1000000),也不能和再小的指数函数(比如
1.0001n)相比,因为总是“存在”一个 M,当 n > M
的时候,1.0001n会超过 n1000000。可是问题的关键,却不在于 M
的“存在”,而在于
它的“大小”。如果你的输入必须达到天文数字才能让指数函数超过多项式的话,那么还不如就用指数复杂度的算法。所以,“P=NP?”这问题的错误就在于,它并没有针对我们的实际需要,而是首先假设了我们有“无穷大”的输入,有“无穷多”的时间和耐心,可以让多项式时间的算法“最终”得到优势。“无穷”和“最终”,就是理论家们的杀手锏。
为了显示这个问题,我们可以画一个坐标曲线,来比较一下
n1000000与 2n,并且解出它们相等时的 n。我不用
1.0001n来比,免得有人说我不公平。我喜欢偷懒,经常用 Mathematica
来解决这些算式。下面就是我用它得出的结果和曲线图:

你看到了,当 1 < n
< 24549200 的时候,我们都有 2n<
n1000000(n1000000那根曲线,一超过1就冲上天去了)。
所以只要输入没有达到2千万这个量级,2n的算法都比 n1000000的算法快。

n1000000也许不说明问题,但是“多项式”的范围实在太大了。n10100,n1010100,…… 都是多项式。实际上,只要 c
是个常数,任何常数,nc就是个多项式。

你能想象 n 需要多大,2n才能超过
n10100吗?当 n=2
的时候,n10100就是
210100。你也许已经意识到,这个数相当于 2n复杂度的算法,接受了 10100个输入。如果你知道
10100(1的后面跟100个0)已经大于宇宙中基本粒子的数目,你也许就会意识到,这是在计算宇宙里所有的粒子的“幂集”(power
set),也就是在枚举宇宙里所有粒子的所有组合。通俗一点说,就是在枚举宇宙里所有可能出现的物体。当任何超级电脑完成这个任务的时候,宇宙恐怕都已经不存在了。况且这个计算是根本无法完成的,因为即使每个粒子可以提供一次计数所需要的能量(E=MC2),你会在还没有数到
10100的时候就用光宇宙里所有的能量。最后,因为这两个 n 是同步的,所以当 2n的输入是 10100的时候,n10100等于
(10100)10100。所以即使枚举了宇宙里所有可能出现的物体,2n仍然远远落后于 n10100。

你也许发现了,其实上面的论述根本没必要用 n10100这么大的多项式,只要用一个很大的常数(比如
10100)就够了,因为常数也算是多项式。使用多项式的原因,只是想演示一下多项式可以有多大。

所以你看到了,常数,指数,输入的大小,对于算法的性能都是很关键的。“P=NP?”的问题就在于它用“多项式”这个笼统的概念抹杀了所有这些细节,以至于即使
P=NP 被证明出来,我们仍然不会得到可以实用的结果。
正确的做法,应该是找到整个算法(代码)的具体的复杂度函数,最好细致到常数。比如
3.65n2 + 21n +
1000,做出类似上面所示的曲线图,然后根据具体输入的大小,看看哪个算法更快一些。在这一点上,Knuth 在 TAOCP
中对算法的细致入微的分析,确实是值得借鉴的(虽然我不赞成他使用机器语言)。
对于“P=NP?”的兴趣,到此就应该已经结束了。可是理论家们又搬出来一个很勉强的借口来支持解决它的意义。他们说,如果证明了
P≠NP,那么人们就不用浪费时间去为 NP 问题寻找多项式时间算法了。推翻这一点本来已经没有多大意思,不过我发现一个挺有趣的观点,可以将这问题的正反两方面一并推翻。
首先,我们已经知道“非确定性计算机”是一个假想出来的机器。我并不是说我们永远不能造出非确定性计算机,但可以肯定的是,现在这种机器不存在。相反,我们已经有确定性计算机,我们每天都在使用它。
所以要解决“P=NP?”,就是要解决:
 
  “我们现有的计算机能否解决某种不存在的计算机能解决的所有问题?”
你看出这个问题的荒诞性了吗?
记得在 Cornell 的时候,有一个 MIT
研究量子计算的博士生来求教职,给我们做了一个演讲,是关于量子计算机的“局限性”。他演讲的副标题叫做:
 
  “What you cannot do with a computer that you do
not have?”
 
     
     
  “你不能用你没有的机器做什么?”
你看出这个问题与“P=NP?”的异曲同工之妙了吗?最后可想而知,Cornell
没有聘用他。

【转】谈“P=NP?”的更多相关文章

  1. 浅谈P NP NPC

    P问题:多项式时间内可以找到解的问题,这个解可以在多项式时间内验证. NP问题:有多项式时间内可以验证的解的问题,而并不能保证可以在多项式时间内找到这个解. 比如汉密尔顿回路,如果找到,在多项式时间内 ...

  2. 浅谈P/NP问题

    克雷数学研究所(Clay Mathematics Institute,CMI)是在1998年由商人兰顿·克雷(Landon T. Clay)和哈佛大学数学家亚瑟·杰夫(Arthur Jaffe)创立, ...

  3. 浅谈分词算法(5)基于字的分词方法(bi-LSTM)

    目录 前言 目录 循环神经网络 基于LSTM的分词 Embedding 数据预处理 模型 如何添加用户词典 前言 很早便规划的浅谈分词算法,总共分为了五个部分,想聊聊自己在各种场景中使用到的分词方法做 ...

  4. 『MXNet』第十二弹_再谈新建计算节点

    上一节我们已经谈到了计算节点,但是即使是官方文档介绍里面相关内容也过于简略,我们使用Faster-RCNN代码中的新建节点为例,重新介绍一下新建节点的调用栈. 1.调用新建节点 参数分为三部分,op_ ...

  5. MCMC 浅谈

    # MCMC 浅谈 1. 采样(sampling)是什么 MCMC在采样算法中有着举足轻重的地位,那么什么是采样?采样就是根据某种分布生成样本.举个例子,线性同余发生器就是根据均匀分布生成样本,这就很 ...

  6. 浅谈独立特征(independent features)、潜在特征(underlying features)提取、以及它们在网络安全中的应用

    1. 关于特征提取 0x1:什么是特征提取 特征提取研究的主要问题是,如何在数据集未明确表示结果的前提下,从中提取出重要的潜在特征来.和无监督聚类一样,特征提取算法的目的不是为了预测,而是要尝试对数据 ...

  7. 以np.concatenate为主题,谈谈numpy数组按维度合并的问题

    1.引言 最近在做多模态融合的图像问题,其中最需要解决的就是不同模态的图像用什么方法进行融合,最简单也最直观的方法就是采用合并数组的方法,将不同模态的图像合并为多通道进行处理.在一些论文中,比如< ...

  8. 《Machine Learning in Action》—— 浅谈线性回归的那些事

    <Machine Learning in Action>-- 浅谈线性回归的那些事 手撕机器学习算法系列文章已经肝了不少,自我感觉质量都挺不错的.目前已经更新了支持向量机SVM.决策树.K ...

  9. TensorFlow 2.0 深度学习实战 —— 浅谈卷积神经网络 CNN

    前言 上一章为大家介绍过深度学习的基础和多层感知机 MLP 的应用,本章开始将深入讲解卷积神经网络的实用场景.卷积神经网络 CNN(Convolutional Neural Networks,Conv ...

随机推荐

  1. Reverse Linked List II leetcode java

    题目: Reverse a linked list from position m to n. Do it in-place and in one-pass. For example: Given 1 ...

  2. Oracle中的数值处理方法

    求绝对值函数 ) from dual; 求平方根函数 ) from dual; 求幂函数 ,3) from dual; 求余弦三角函数 select cos(3.14159) from dual; 求 ...

  3. [CSS] Pseduo

    #self aside li{ list-style-type: none;padding:5px;border-bottom: 1px solid #ccc;} #self aside li:las ...

  4. HIVE部署安装(笔记)

    1.下载hive:wget http://mirrors.cnnic.cn/apache/hive/hive-0.12.0/hive-0.12.0.tar.gz2.解压hive安装文件 tar -zv ...

  5. 5种调优Java NIO和NIO.2的方式

    Java NIO(New Input/Output)——新的输入/输出API包——是2002年引入到J2SE 1.4里的.Java NIO的目标是提高Java平台上的I/O密集型任务的性能.过了十年, ...

  6. Web Service 的工作原理(转载)

    Web Service基本概念 Web Service也叫XML Web Service WebService是一种可以接收从Internet或者Intranet上的其它系统中传递过来的请求,轻量级的 ...

  7. 转:VB 6 在IE7以上版本机器上出现ieframe.dll 文件找不到问题

        用VB打开已存工程时弹出一个对话框:file not found c:\windows\system32\IEFRAME.dll\1 continue loading project 看到这个 ...

  8. expdp impdp 错误: ORA-39064: 无法写入日志文件 ORA-29285: 文件写入错误(解决方案)

    windows: 运行 -> regedit ->查找 键值 NLS_LANG 将字符集 SIMPLIFIED CHINESE_CHINA.ZHS16GBK 修改为AMERICAN_AME ...

  9. html页面禁止选择复制剪切

    在body加入 onselectstart="return false" oncopy="return false;" oncut="return f ...

  10. DB2的认证和授权

    DB2 的安全性由两方面组成:认证和授权 1.认证 认证就是系统验证用户身份的过程.说的简单点,就是验证用户名和密码,因为DB2用户同时也是操作系统用户,所以,首先必须得到操作系统的认可.在默认情况下 ...