给定一个序列,初始为空。现在我们将1到N的数字插入到序列中,每次将一个数字插入到一个特定的位置。每插入一个数字,我们都想知道此时最长上升子序列长度是多少?

由于序列是顺序插入的,所以当前插入的数字对之前的数字形成的最长上升子序列没有任何影响,所以只需要计算出当前的这个数字结尾的上升子序列长度。

由于$dp[i]=max(dp[j])+1(j<i)$,所以可以用线段树维护。

这样就需要预先计算出来这个序列的最后的状态,考虑从n到1倒着算,二分这个数字出现的位置。

因此总时间复杂度为$O(nlogn)$.

# include <cstdio>
# include <cstring>
# include <cstdlib>
# include <iostream>
# include <vector>
# include <queue>
# include <stack>
# include <map>
# include <bitset>
# include <set>
# include <cmath>
# include <algorithm>
using namespace std;
# define lowbit(x) ((x)&(-x))
# define pi acos(-1.0)
# define eps 1e-
# define MOD
# define INF
# define mem(a,b) memset(a,b,sizeof(a))
# define FOR(i,a,n) for(int i=a; i<=n; ++i)
# define FDR(i,a,n) for(int i=a; i>=n; --i)
# define bug puts("H");
# define lch p<<,l,mid
# define rch p<<|,mid+,r
# define mp make_pair
# define pb push_back
typedef pair<int,int> PII;
typedef vector<int> VI;
# pragma comment(linker, "/STACK:1024000000,1024000000")
typedef long long LL;
namespace IO{
char buf[<<], *fs, *ft;
inline char readc(){
return (fs==ft&&(ft=(fs=buf)+fread(buf,,<<,stdin)),fs==ft)?EOF:*fs++;
}
inline int Scan(){
char c; int r;
while(c = readc()){if(isdigit(c)){r = c^0x30;break;}}
while(isdigit(c = readc()))r = (r<<)+(r<<)+(c^0x30);
return r;
}
inline int Scan_s(char *str){
int len = ;char c;
while(!isalpha(c = readc()));str[] = c;
while(isalpha(c = readc()))str[len++] = c;
str[len] = ;
return len;
}
};using IO::Scan_s; using IO::Scan; const int N=;
//Code begin... int a[N], b[N], tree[N], seg[N<<], ans[N]; void add(int x){while (x<N) ++tree[x], x+=lowbit(x);}
int sum(int x){
int res=;
while (x) res+=tree[x], x-=lowbit(x);
return res;
}
void push_up(int p){seg[p]=max(seg[p<<],seg[p<<|]);}
void update(int p, int l, int r, int L, int val){
if (L>r||L<l) return ;
if (L==l&&L==r) seg[p]=val;
else {
int mid=(l+r)>>;
update(lch,L,val); update(rch,L,val); push_up(p);
}
}
int query(int p, int l, int r, int L, int R){
if (L>r||R<l) return ;
if (L<=l&&R>=r) return seg[p];
int mid=(l+r)>>;
return max(query(lch,L,R),query(rch,L,R));
}
int main ()
{
int n;
scanf("%d",&n);
FOR(i,,n) scanf("%d",a+i), ++a[i];
FDR(i,n,) {
int l=a[i], r=n+, mid;
while (l<r) {
mid=(l+r)>>;
if (sum(mid)<=mid-a[i]) r=mid;
else l=mid+;
}
a[i]=r; add(a[i]);
}
FOR(i,,n) ans[i]=query(,,n,,a[i])+, update(,,n,a[i],ans[i]);
FOR(i,,n) ans[i]=max(ans[i],ans[i-]);
FOR(i,,n) printf("%d\n",ans[i]);
return ;
}

BZOJ 3173 最长上升子序列(树状数组+二分+线段树)的更多相关文章

  1. 树状数组+二分||线段树 HDOJ 5493 Queue

    题目传送门 题意:已知每个人的独一无二的身高以及排在他前面或者后面比他高的人数,问身高字典序最小的排法 分析:首先对身高从矮到高排序,那么可以知道每个人有多少人的身高比他高,那么取较小值(k[i], ...

  2. POJ 2892 Tunnel Warfare || HDU 1540(树状数组+二分 || 线段树的单点更新+区间查询)

    点我看题目 题意 :N个村子连成一条线,相邻的村子都有直接的地道进行相连,不相连的都由地道间接相连,三个命令,D x,表示x村庄被摧毁,R  ,表示最后被摧毁的村庄已经重建了,Q x表示,与x直接或间 ...

  3. [BZOJ 3196] 213平衡树 【线段树套set + 树状数组套线段树】

    题目链接:BZOJ - 3196 题目分析 区间Kth和区间Rank用树状数组套线段树实现,区间前驱后继用线段树套set实现. 为了节省空间,需要离线,先离散化,这样需要的数组大小可以小一些,可以卡过 ...

  4. [BZOJ 1901] Dynamic Rankings 【树状数组套线段树 || 线段树套线段树】

    题目链接:BZOJ - 1901 题目分析 树状数组套线段树或线段树套线段树都可以解决这道题. 第一层是区间,第二层是权值. 空间复杂度和时间复杂度均为 O(n log^2 n). 线段树比树状数组麻 ...

  5. BZOJ.4553.[HEOI2016&TJOI2016]序列(DP 树状数组套线段树/二维线段树(MLE) 动态开点)

    题目链接:BZOJ 洛谷 \(O(n^2)\)DP很好写,对于当前的i从之前满足条件的j中选一个最大值,\(dp[i]=d[j]+1\) for(int j=1; j<i; ++j) if(a[ ...

  6. bzoj 3110: [Zjoi2013]K大数查询 树状数组套线段树

    3110: [Zjoi2013]K大数查询 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 1384  Solved: 629[Submit][Stat ...

  7. BZOJ 1901 Zju2112 Dynamic Rankings 树状数组套线段树

    题意概述:带修改求区间第k大. 分析: 我们知道不带修改的时候直接上主席树就可以了对吧?两个版本号里面的节点一起走在线段树上二分,复杂度是O((N+M)logN). 然而这里可以修改,主席树显然是凉了 ...

  8. 【BZOJ3196】二逼平衡树(树状数组,线段树)

    [BZOJ3196]二逼平衡树(树状数组,线段树) 题面 BZOJ题面 题解 如果不存在区间修改操作: 搞一个权值线段树 区间第K大--->直接在线段树上二分 某个数第几大--->查询一下 ...

  9. [APIO2019] [LOJ 3146] 路灯 (cdq分治或树状数组套线段树)

    [APIO2019] [LOJ 3146] 路灯 (cdq分治或树状数组套线段树) 题面 略 分析 首先把一组询问(x,y)看成二维平面上的一个点,我们想办法用数据结构维护这个二维平面(注意根据题意这 ...

随机推荐

  1. frp+TeamViewer 完美解决TeamViewer5分钟商业提醒

    必要条件:必须有一个公网服务器 frp是一个开源的端口转发工具,中文使用说明及下载地址在这里  https://github.com/fatedier/frp/blob/master/README_z ...

  2. spring cloud网关通过Zuul RateLimit 限流配置

    目录 引入依赖 配置信息 RateLimit源码简单分析 RateLimit详细的配置信息解读 在平常项目中为了防止一些没有token访问的API被大量无限的调用,需要对一些服务进行API限流.就好比 ...

  3. Windows下Redis集群搭建

    1.第一步先安装Redis 参照<Windows下Redis安装及使用.docx> 在Redis目录E:/Redis下新建Logs文件夹,并且创建3个端口下的配置文件,记得修改里面的接口 ...

  4. php 文件上传缩略图路径分析类

    <?php //文件上传时分析路径信息 //author:songzhenghe 2014-1-24 //version 0.1 class path_ana {     private $da ...

  5. c语言数字图像处理(四):灰度变换

    灰度变换 灰度变换函数 s = T(r)   其中r为输入图像在(x, y)点处的灰度值,s为输出图像在(x, y)点处的灰度值 灰度变换的作用 上图所示的两幅T(s)函数的图像曲线,第一幅图可以增强 ...

  6. [Unity Shader] 逐顶点光照和逐片元漫反射光照

    书中的6.4节讲的是漫反射的逐顶点光照和逐片元光照. 前一种算法是根据漫反射公式计算顶点颜色(顶点着色器),对颜色插值(光栅化过程)返回每个像素的颜色值(片元着色器). 第二种算法是获得顶点的法线(顶 ...

  7. NIKTO介绍及使用方法

    1.    NIKTO:perl语言开发的开源WEB安全扫描器:识别网站软件版本:搜索存在安全隐患的文件:检查服务器配置漏洞:检查WEB Application层面的安全隐患:避免404误判(原因:很 ...

  8. GitHub笔记(三)——分支管理和多人协作

    三.分支管理 0 语句: 查看分支:git branch 创建分支:git branch <name> 切换分支:git checkout <name> 创建+切换分支:git ...

  9. windows下在virtualbox中的Fuel Openstack 9.0 安装过程

    一.材料: 1.软件: virtualbox xshell(或putty,winscp) bootstrap.zip(580MB) mirrors(3.01GB) MirantisOpenStack- ...

  10. 拒绝滥用golang defer机制

    原文链接 : http://www.bugclosed.com/post/17 defer机制 go语言中的defer提供了在函数返回前执行操作的机制,在需要资源回收的场景非常方便易用(比如文件关闭, ...