再谈 最速下降法/梯度法/Steepest Descent
转载请注明出处:http://www.codelast.com/
最速下降法(又称梯度法,或Steepest Descent),是无约束最优化领域中最简单的算法,单独就这种算法来看,属于早就“过时”了的一种算法。但是,它的理念是其他某些算法的组成部分,或者说是在其他某些算法中,也有最速下降法的“影子”。因此,我们还是有必要学习一下的。
我很久以前已经写过一篇关于最速下降法的文章了,但是这里我还打算再写一篇,提供更多一些信息,让大家可以从更简单生动的方面去理解它。
『1』名字释义
最速下降法只使用目标函数的一阶导数信息——从“梯度法”这个名字也可见一斑。并且,它的本意是取目标函数值“最快下降”的方向作为搜索方向。于是我们就想知道这个问题的答案:沿什么方向,目标函数 f(x) 的值下降最快呢?
『2』函数值下降最快的方向
先说结论:沿负梯度方向 d=−gk,函数值下降最快。
下面就来推导一下。
将目标函数f(x)在点xk处泰勒展开(这是我们惯用的“伎俩”了)——
f(x)=f(xk)+αgTkdk+o(α)
高阶无穷小o(α)可忽略,由于我们定义了步长α>0,因此,当gTkdk<0时,f(x)<f(xk),即函数值是下降的。此时dk就是一个下降方向。
但是dk具体等于什么的时候,可使目标函数值下降最快呢?
文章来源:http://www.codelast.com/
由Cauchy-Schwartz不等式(柯西-许瓦兹不等式)可得:
∣∣dTkgk∣∣≤∥dk∥∥gk∥
当且仅当dk=gk时,等号成立,dTkgk最大(>0)。
所以dk=−gk时,dTkgk最小(<0),f(x)下降量最大。
所以−gk是最快速下降方向。
『3』缺点
它真的“最快速”吗?答案是否定的。
事实是,它只在局部范围内具有“最速”性质。
对整体求解过程而言,它的下降非常缓慢。
『4』感受一下它是如何“慢”的
先来看一幅图(直接从维基百科上弄过来的,感谢Wiki):
文章来源:http://www.codelast.com/
这幅图表示的是对一个目标函数的寻优过程,图中锯齿状的路线就是寻优路线在二维平面上的投影。
这个函数的表达式是:
f(x1,x2)=(1−x1)2+100⋅(x2−x12)2
它叫做Rosenbrock function(罗森布罗克方程),是个非凸函数,在最优化领域,它通常被用来作为一个最优化算法的performance test函数。
我们来看一看它在三维空间中的图形:
它的全局最优点位于一个长长的、狭窄的、抛物线形状的、扁平的“山谷”中。
我们再来看另一个目标函数f(x,y)=sin(12x2−14y2+3)cos(2x+1−ey)的寻优过程:
它在三维空间中的图形是这样的:
『5』为什么“慢”的分析
上面花花绿绿的图确实很好看,我们看到了那些寻优过程有多么“惨烈”——太艰辛了不是么?
但不能光看热闹,还要分析一下——为什么会这样呢?
由精确line search满足的一阶必要条件,得:
∇f(xk+αkdk)Tdk=0,即gTk+1dk=0
故由最速下降法的dk=−gk得:
gTk+1dk=gTk+1(−gk)=−gTk+1gk=−dTk+1dk=0⇒dTk+1dk=0
即:相邻两次的搜索方向是相互直交的(投影到二维平面上,就是锯齿形状了)。
文章来源:http://www.codelast.com/
如果你非要问,为什么dTk+1dk=0就表明这两个向量是相互直交的?那么我就耐心地再解释一下:
由两向量夹角的公式:
=> θ=π2
两向量夹角为90度,因此它们直交。
『6』优点
这个被我们说得一无是处的最速下降法真的就那么糟糕吗?其实它还是有优点的:程序简单,计算量小;并且对初始点没有特别的要求;此外,许多算法的初始/再开始方向都是最速下降方向(即负梯度方向)。
文章来源:http://www.codelast.com/
『7』收敛性及收敛速度
最速下降法具有整体收敛性——对初始点没有特殊要求。
采用精确线搜索的最速下降法的收敛速度:线性。
再谈 最速下降法/梯度法/Steepest Descent的更多相关文章
- 【转】再谈 最速下降法/梯度法/Steepest Descent
转载请注明出处:http://www.codelast.com/ 最速下降法(又称梯度法,或Steepest Descent),是无约束最优化领域中最简单的算法,单独就这种算法来看,属于早就“过时”了 ...
- 梯度下降法Gradient descent(最速下降法Steepest Descent)
最陡下降法(steepest descent method)又称梯度下降法(英语:Gradient descent)是一个一阶最优化算法. 函数值下降最快的方向是什么?沿负梯度方向 d=−gk
- [转载]再谈百度:KPI、无人机,以及一个必须给父母看的案例
[转载]再谈百度:KPI.无人机,以及一个必须给父母看的案例 发表于 2016-03-15 | 0 Comments | 阅读次数 33 原文: 再谈百度:KPI.无人机,以及一个必须 ...
- Support Vector Machine (3) : 再谈泛化误差(Generalization Error)
目录 Support Vector Machine (1) : 简单SVM原理 Support Vector Machine (2) : Sequential Minimal Optimization ...
- Unity教程之再谈Unity中的优化技术
这是从 Unity教程之再谈Unity中的优化技术 这篇文章里提取出来的一部分,这篇文章让我学到了挺多可能我应该知道却还没知道的知识,写的挺好的 优化几何体 这一步主要是为了针对性能瓶颈中的”顶点 ...
- 浅谈HTTP中Get与Post的区别/HTTP协议与HTML表单(再谈GET与POST的区别)
HTTP协议与HTML表单(再谈GET与POST的区别) GET方式在request-line中传送数据:POST方式在request-line及request-body中均可以传送数据. http: ...
- Another Look at Events(再谈Events)
转载:http://www.qtcn.org/bbs/simple/?t31383.html Another Look at Events(再谈Events) 最近在学习Qt事件处理的时候发现一篇很不 ...
- C++ Primer 学习笔记_32_STL实践与分析(6) --再谈string类型(下)
STL实践与分析 --再谈string类型(下) 四.string类型的查找操作 string类型提供了6种查找函数,每种函数以不同形式的find命名.这些操作所有返回string::size_typ ...
- 再谈JSON -json定义及数据类型
再谈json 近期在项目中使用到了highcharts ,highstock做了一些统计分析.使用jQuery ajax那就不得不使用json, 可是在使用过程中也出现了非常多的疑惑,比方说,什么情况 ...
随机推荐
- python中面向对象_类_对象的概念与定义
1. 面向对象的概念,面向对象是一种编程思想. 是对现实世界中一类事物的抽象,在编程中可以理解为是一种建立现实世界事物的模型 2. 面向对象和面向过程的区别: 面向过程关注的是完成工作的步骤. 面向 ...
- 初学者浅谈我对领域驱动设计(DDD)的理解
一.为什么要学习领域驱动设计 如果你已经设计出了优雅而万能的软件架构,如果你只是想做一名高效的编码程序员,如果你负责的软件并不复杂,那你确实不需要学习领域驱动设计. 如果用领域驱动设计带来的收获: 能 ...
- CentOS安装GoAccess
官网 https://goaccess.io/ yum -y install glib2 glib2-devel ncurses ncurses-devel GeoIP GeoIP-devel安装依赖 ...
- TPO-21 C2 Which elective courses to take
/* 加粗:语音部分 * 红色:单词部分 * 斜体:语法部分 * 下划线:信号词/句 */ 第 1 段 1.Listen to a conversation between a student and ...
- [笔试]CVTE 2019提前批 Windows应用开发笔试
不定项选择(x20) 数据结构 以abcdefg的顺序入栈,不可能出现的出栈顺序 一棵二叉树给出中序遍历和后序遍历结果,求左子树的节点数 操作系统 Linux中用什么指令可以找到文件中所有以" ...
- 浅谈C与Java
Java的方法调用过程 Java变量:基本类型变量.指针变量 push 压入新的栈桢 在栈桢内部创建局部基本类型变量,接收参数值 在栈桢内部创建局部指针变量,接收参数值后,该指针变量指向堆上实例 po ...
- 浏览器初始页面设置及被hao123劫持解决办法
最近在用浏览器时打开初始页面都是hao123,喵喵喜欢简单干净的页面,就去设置初始页面. 此处放置初始页面参考(并不太难): https://jingyan.baidu.com/article/11c ...
- 理解粒子滤波(particle filter)
1)初始化阶段-提取跟踪目标特征 该阶段要人工指定跟踪目标,程序计算跟踪目标的特征,比如可以采用目标的颜色特征.具体到Rob Hess的代码,开始时需要人工用鼠标拖动出一个跟踪区域,然后程序自动计算该 ...
- sqli-labs学习笔记 DAY5
DAY 5 sqli-labs lesson 26a 闭合符号为单引号和括号,并且不回显错误,如果服务器是Linux,尝试%a0代替空格,这里尝试使用布尔型 数据库名长度:?id=1')&&a ...
- 拒绝滥用golang defer机制
原文链接 : http://www.bugclosed.com/post/17 defer机制 go语言中的defer提供了在函数返回前执行操作的机制,在需要资源回收的场景非常方便易用(比如文件关闭, ...