很好的题目。

有不多于200个任务,每个任务要在si到ei这个时间段内完成,每个任务的任务量是ti*ni,只有一台机器,且其单位时间内可完成的任务量为m。

现在问你,能否使所有的任务全部在规定的时间段内完成。

首先把所有的时间都提取出来,排序,得到2*n-1个时间区间。

网络流建模。首先创建一个超级源点和超级汇点。源点连接n个任务,与每个任务的边的容量为ni*ti,汇点连接2*n-1个时间区间,容量为时间长度与m的乘积。同时在任务和时间区间之间也需要连边,如果某个任务的时间和时间区间有公共时间段,那么他们之间连一条边,边容量为公共时间长度乘以m。这样我们只需要求整个网络的最大流,看看是否与总的工作量相等即可。

很有意思。嘿嘿

召唤代码君:

#include <iostream>
#include <cstdio>
#include <queue>
#include <algorithm>
#include <vector>
#define maxn 777
#define Inf ~0U>>1
using namespace std; int c[maxn][maxn],d[maxn],can[maxn];
int n,m,s,t,tot,ans;
int ni[maxn],ti[maxn],si[maxn],ei[maxn];
int T[maxn],N;
vector<int> v[maxn]; void _init()
{
s=1,t=1+3*n,N=0,ans=tot=0;
for (int i=1; i<=1+3*n; i++)
{
v[i].clear();
for (int j=1; j<=1+3*n; j++) c[i][j]=0;
}
} void graph_build()
{
int L,R;
sort(T+1,T+1+2*n);
for (int i=1; i<=n; i++)
{
c[1][i+1]=ni[i]*ti[i];
v[1].push_back(i+1),v[i+1].push_back(1);
}
for (int i=1; i<2*n; i++)
{
c[n+1+i][3*n+1]=(T[i+1]-T[i])*m;
v[n+1+i].push_back(3*n+1),v[3*n+1].push_back(n+1+i);
}
for (int i=1; i<=n; i++)
for (int j=1; j<2*n; j++)
{
L=max(si[i],T[j]);
R=min(ei[i],T[j+1]);
if (L>=R) continue;
c[1+i][n+1+j]=(R-L)*m;
v[1+i].push_back(n+1+j),v[n+1+j].push_back(1+i);
}
} void bfs()
{
for (int i=s; i<=t; i++) d[i]=999999,can[i]=0;
queue<int> Q;
Q.push(t);
d[t]=0;
while (!Q.empty())
{
int cur=Q.front();
Q.pop();
for (unsigned i=0; i<v[cur].size(); i++)
{
if (c[v[cur][i]][cur]<=0) continue;
if (d[cur]+1<d[v[cur][i]])
{
d[v[cur][i]]=d[cur]+1;
Q.push(v[cur][i]);
}
}
}
} int dfs(int cur,int num)
{
if (cur==t) return num;
int k,tmp=num;
for (unsigned i=0; i<v[cur].size(); i++)
{
if (c[cur][v[cur][i]]<=0 || d[v[cur][i]]+1!=d[cur] || can[v[cur][i]]) continue;
k=dfs(v[cur][i],min(num,c[cur][v[cur][i]]));
if (k) c[cur][v[cur][i]]-=k,c[v[cur][i]][cur]+=k,num-=k;
}
if (num) can[cur]=1;
return tmp-num;
} int Dinic()
{
for (bfs(); d[s]<3*n+1; bfs()) ans+=dfs(1,Inf);
return ans;
} int main()
{
while (scanf("%d%d",&n,&m)!=EOF)
{
_init();
for (int i=1; i<=n; i++)
{
scanf("%d%d%d%d",&si[i],&ni[i],&ei[i],&ti[i]);
tot+=ni[i]*ti[i];
T[++N]=si[i],T[++N]=ei[i];
}
graph_build();
if (Dinic()==tot) puts("Yes");
else puts("No");
}
return 0;
}

  

HDU2883_kebab的更多相关文章

随机推荐

  1. python爬虫之图片懒加载、selenium和phantomJS

    一.什么是图片懒加载 在网页中,常常需要用到图片,而图片需要消耗较大的流量.正常情况下,浏览器会解析整个HTML代码,然后从上到下依次加载<img src="xxx"> ...

  2. 腾讯云服务器linux Ubuntu操作系统搭建ftp服务器vsftpd

    腾讯云服务器linux Ubuntu操作系统安装ftp服务器vsftpd 操作系统: Ubuntu Server 16.04.1 LTS 64位 下面我将系统重装, 一步一步从头开始,安装FTP服务器 ...

  3. JAVA之运算符优先级

    Java运算符优先级从高到低 运算符 结合性 [ ] . ( ) (方法调用) 从左向右 ! ~ ++ -- +(一元运算) -(一元运算) 从右向左 * / % 从左向右 + - 从左向右 < ...

  4. kubernetes高可用设计-master节点和kubectl

    部署master 节点 上一遍是CA证书和etcd的部署,这一篇继续搭建k8s,废话不多说.开始部署. kubernetes master 节点包含的组件有: kube-apiserver kube- ...

  5. 高可用OpenStack(Queen版)集群-4.keystone集群

    参考文档: Install-guide:https://docs.openstack.org/install-guide/ OpenStack High Availability Guide:http ...

  6. 打包一个传统的ASP.NET web app作为Docker镜像

    (1)针对NerdDinner应用的Dockerfile内容如下 PS E:\DockeronWindows\Chapter02\ch02-nerd-dinner> cat .\Dockerfi ...

  7. 从零开始的Python学习Episode 18——面向对象(1)

    类与对象 类即类别.种类,是面向对象设计最重要的概念,对象是特征与技能的结合体,而类则是一系列对象相似的特征与技能的结合体. 类的定义 class 类名: 属性1 属性2 def 方法(self,ar ...

  8. Ruby知识点二:类

    1.追查对象是否属于某个类时,使用is_a?方法  追查某个对象属于哪个类时,使用class方法 判断某个对象是否属于某个类时,使用instance_of?方法 判断类是否包含某个模块,使用inclu ...

  9. Virtual DOM的简单实现

    了解React的同学都知道,React提供了一个高效的视图更新机制:Virtual DOM,因为DOM天生就慢,所以操作DOM的时候要小心翼翼,稍微改动就会触发重绘重排,大量消耗性能. 1.Virtu ...

  10. Scrum Meeting 10.23

    Scrum Meeting No.3 今天所完成的任务仍然停留在学习基础知识上.说实话,由于缺少安卓开发.web开发的经验,我们只能一步步摸索着来. 成员 已完成任务 下一阶段任务 徐越 阅读网上的博 ...