转载自:https://blog.csdn.net/Dream_angel_Z/article/details/49406573

本文主要是对照scikit-learn的preprocessing章节结合代码简单的回顾下预处理技术的几种方法,主要包括标准化、数据最大最小缩放处理、正则化、特征二值化和数据缺失值处理。内容比较简单,仅供参考!

首先来回顾一下下面要用到的基本知识。

一、知识回顾

均值公式:

x¯=1n∑i=1nxi" role="presentation">x¯=1n∑i=1nxix¯=1n∑i=1nxi

方差公式:

s2=1n∑i=1n(xi−x¯)2" role="presentation">s2=1n∑i=1n(xi−x¯)2s2=1n∑i=1n(xi−x¯)2

0-范数,向量中非零元素的个数。

1-范数:

||X||=∑i=1n|xi|" role="presentation">||X||=∑i=1n|xi|||X||=∑i=1n|xi|

2-范数:

||X||2=(∑i=1nxi2)12" role="presentation">||X||2=(∑i=1nx2i)12||X||2=(∑i=1nxi2)12

p-范数的计算公式:

||X||p=(|x1|p+|x2|p+...+|xn|p)1p" role="presentation">||X||p=(|x1|p+|x2|p+...+|xn|p)1p||X||p=(|x1|p+|x2|p+...+|xn|p)1p

数据标准化:当单个特征的样本取值相差甚大或明显不遵从高斯正态分布时,标准化表现的效果较差。实际操作中,经常忽略特征数据的分布形状,移除每个特征均值,划分离散特征的标准差,从而等级化,进而实现数据中心化。

二、标准化(Standardization),或者去除均值和方差进行缩放

公式为:(X-X_mean)/X_std 计算时对每个属性/每列分别进行.

将数据按其属性(按列进行)减去其均值,然后除以其方差。最后得到的结果是,对每个属性/每列来说所有数据都聚集在0附近,方差值为1。

首先说明下sklearn中preprocessing库里面的scale函数使用方法:

sklearn.preprocessing.scale(X, axis=0, with_mean=True,with_std=True,copy=True)
  • 1

根据参数的不同,可以沿任意轴标准化数据集。

参数解释:

  • X:数组或者矩阵
  • axis:int类型,初始值为0,axis用来计算均值 means 和标准方差 standard deviations. 如果是0,则单独的标准化每个特征(列),如果是1,则标准化每个观测样本(行)。
  • with_mean: boolean类型,默认为True,表示将数据均值规范到0
  • with_std: boolean类型,默认为True,表示将数据方差规范到1

一个简单的例子

假设现在我构造一个数据集X,然后想要将其标准化。下面使用不同的方法来标准化X:

方法一:使用sklearn.preprocessing.scale()函数

方法说明:

  • X.mean(axis=0)用来计算数据X每个特征的均值;
  • X.std(axis=0)用来计算数据X每个特征的方差;
  • preprocessing.scale(X)直接标准化数据X。

将代码整理到一个文件中:

from sklearn import preprocessing
import numpy as np
X = np.array([[ 1., -1., 2.],
[ 2., 0., 0.],
[ 0., 1., -1.]])
# calculate mean
X_mean = X.mean(axis=0)
# calculate variance
X_std = X.std(axis=0)
# standardize X
X1 = (X-X_mean)/X_std
# use function preprocessing.scale to standardize X
X_scale = preprocessing.scale(X)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13

最后X_scale的值和X1的值是一样的,前面是单独的使用数学公式来计算,主要是为了形成一个对比,能够更好的理解scale()方法。

方法2:sklearn.preprocessing.StandardScaler类

该方法也可以对数据X进行标准化处理,实例如下:

from sklearn import preprocessing
import numpy as np
X = np.array([[ 1., -1., 2.],
[ 2., 0., 0.],
[ 0., 1., -1.]])
scaler = preprocessing.StandardScaler()
X_scaled = scaler.fit_transform(X)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7

这两个方法得到最后的结果都是一样的。


三、将特征的取值缩小到一个范围(如0到1)

除了上述介绍的方法之外,另一种常用的方法是将属性缩放到一个指定的最大值和最小值(通常是1-0)之间,这可以通过preprocessing.MinMaxScaler类来实现。

使用这种方法的目的包括:

  • 1、对于方差非常小的属性可以增强其稳定性;
  • 2、维持稀疏矩阵中为0的条目。

下面将数据缩至0-1之间,采用MinMaxScaler函数

from sklearn import preprocessing
import numpy as np
X = np.array([[ 1., -1., 2.],
[ 2., 0., 0.],
[ 0., 1., -1.]])
min_max_scaler = preprocessing.MinMaxScaler()
X_minMax = min_max_scaler.fit_transform(X)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7

最后输出:

array([[ 0.5       ,  0.        ,  1.        ],
[ 1. , 0.5 , 0.33333333],
[ 0. , 1. , 0. ]])
  • 1
  • 2
  • 3

测试用例:

>>> X_test = np.array([[ -3., -1.,  4.]])
>>> X_test_minmax = min_max_scaler.transform(X_test)
>>> X_test_minmax
array([[-1.5 , 0. , 1.66666667]])
  • 1
  • 2
  • 3
  • 4

注意:这些变换都是对列进行处理。

当然,在构造类对象的时候也可以直接指定最大最小值的范围:feature_range=(min, max),此时应用的公式变为:

X_std=(X-X.min(axis=0))/(X.max(axis=0)-X.min(axis=0))
X_minmax=X_std/(X.max(axis=0)-X.min(axis=0))+X.min(axis=0))
  • 1
  • 2

四、正则化(Normalization)

正则化的过程是将每个样本缩放到单位范数(每个样本的范数为1),如果要使用如二次型(点积)或者其它核方法计算两个样本之间的相似性这个方法会很有用。

该方法是文本分类和聚类分析中经常使用的向量空间模型(Vector Space Model)的基础.

Normalization主要思想是对每个样本计算其p-范数,然后对该样本中每个元素除以该范数,这样处理的结果是使得每个处理后样本的p-范数(l1-norm,l2-norm)等于1。

方法1:使用sklearn.preprocessing.normalize()函数

>>> X = [[ 1., -1.,  2.],
... [ 2., 0., 0.],
... [ 0., 1., -1.]]
>>> X_normalized = preprocessing.normalize(X, norm='l2')
>>> X_normalized
array([[ 0.40..., -0.40..., 0.81...],
[ 1. ..., 0. ..., 0. ...],
[ 0. ..., 0.70..., -0.70...]])
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8

方法2:sklearn.preprocessing.StandardScaler类

>>> normalizer = preprocessing.Normalizer().fit(X)  # fit does nothing
>>> normalizer
Normalizer(copy=True, norm='l2')
  • 1
  • 2
  • 3

然后使用正则化实例来转换样本向量:

>>> normalizer.transform(X)
array([[ 0.40..., -0.40..., 0.81...],
[ 1. ..., 0. ..., 0. ...],
[ 0. ..., 0.70..., -0.70...]])
>>> normalizer.transform([[-1., 1., 0.]])
array([[-0.70..., 0.70..., 0. ...]])
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6

两种方法都可以,效果是一样的。


五、二值化(Binarization)

特征的二值化主要是为了将数据特征转变成boolean变量。在sklearn中,sklearn.preprocessing.Binarizer函数可以实现这一功能。实例如下:

>>> X = [[ 1., -1.,  2.],
... [ 2., 0., 0.],
... [ 0., 1., -1.]]
>>> binarizer = preprocessing.Binarizer().fit(X) # fit does nothing
>>> binarizer
Binarizer(copy=True, threshold=0.0)
>>> binarizer.transform(X)
array([[ 1., 0., 1.],
[ 1., 0., 0.],
[ 0., 1., 0.]])
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10

Binarizer函数也可以设定一个阈值,结果数据值大于阈值的为1,小于阈值的为0,实例代码如下:

>>> binarizer = preprocessing.Binarizer(threshold=1.1)
>>> binarizer.transform(X)
array([[ 0., 0., 1.],
[ 1., 0., 0.],
[ 0., 0., 0.]])
  • 1
  • 2
  • 3
  • 4
  • 5

六、缺失值处理

由于不同的原因,许多现实中的数据集都包含有缺失值,要么是空白的,要么使用NaNs或者其它的符号替代。这些数据无法直接使用scikit-learn分类器直接训练,所以需要进行处理。幸运地是,sklearn中的Imputer类提供了一些基本的方法来处理缺失值,如使用均值、中位值或者缺失值所在列中频繁出现的值来替换。

下面是使用均值来处理的实例:

>>> import numpy as np
>>> from sklearn.preprocessing import Imputer
>>> imp = Imputer(missing_values='NaN', strategy='mean', axis=0)
>>> imp.fit([[1, 2], [np.nan, 3], [7, 6]])
Imputer(axis=0, copy=True, missing_values='NaN', strategy='mean', verbose=0)
>>> X = [[np.nan, 2], [6, np.nan], [7, 6]]
>>> print(imp.transform(X))
[[ 4. 2. ]
[ 6. 3.666...]
[ 7. 6. ]]
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10

Imputer类同样支持稀疏矩阵:

>>> import scipy.sparse as sp
>>> X = sp.csc_matrix([[1, 2], [0, 3], [7, 6]])
>>> imp = Imputer(missing_values=0, strategy='mean', axis=0)
>>> imp.fit(X)
Imputer(axis=0, copy=True, missing_values=0, strategy='mean', verbose=0)
>>> X_test = sp.csc_matrix([[0, 2], [6, 0], [7, 6]])
>>> print(imp.transform(X_test))
[[ 4. 2. ]
[ 6. 3.666...]
[ 7. 6. ]]
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10

本文讲解的比较接单,如果对这些不是很理解的话,请到scikit-learn的官网中查看英文版本:preprocessing.

References


本栏目机器学习持续更新中,欢迎来访:Dream_Angel_Z 博客

新浪微博: @拾毅者 个人博客: D.W’s Diary

Scikit-learn数据变换的更多相关文章

  1. scikit learn 模块 调参 pipeline+girdsearch 数据举例:文档分类 (python代码)

    scikit learn 模块 调参 pipeline+girdsearch 数据举例:文档分类数据集 fetch_20newsgroups #-*- coding: UTF-8 -*- import ...

  2. kaggle数据挖掘竞赛初步--Titanic<数据变换>

    完整代码: https://github.com/cindycindyhi/kaggle-Titanic 特征工程系列: Titanic系列之原始数据分析和数据处理 Titanic系列之数据变换 Ti ...

  3. (原创)(四)机器学习笔记之Scikit Learn的Logistic回归初探

    目录 5.3 使用LogisticRegressionCV进行正则化的 Logistic Regression 参数调优 一.Scikit Learn中有关logistics回归函数的介绍 1. 交叉 ...

  4. Scikit Learn: 在python中机器学习

    转自:http://my.oschina.net/u/175377/blog/84420#OSC_h2_23 Scikit Learn: 在python中机器学习 Warning 警告:有些没能理解的 ...

  5. (原创)(三)机器学习笔记之Scikit Learn的线性回归模型初探

    一.Scikit Learn中使用estimator三部曲 1. 构造estimator 2. 训练模型:fit 3. 利用模型进行预测:predict 二.模型评价 模型训练好后,度量模型拟合效果的 ...

  6. R学习笔记 第五篇:数据变换和清理

    在使用R的分组操作之前,首先要了解R语言包,包实质上是实现特定功能的,预先写好的代码库(library),R拥有大量的软件包,许多包都是由某一领域的专家编写的,但并不是所有的包都有很高的质量的,在使用 ...

  7. R实战 第六篇:数据变换(aggregate+dplyr)

    数据分析的工作,80%的时间耗费在处理数据上,而数据处理的主要过程可以分为:分离-操作-结合(Split-Apply-Combine),也就是说,首先,把数据根据特定的字段分组,每个分组都是独立的:然 ...

  8. Scikit Learn

    Scikit Learn Scikit-Learn简称sklearn,基于 Python 语言的,简单高效的数据挖掘和数据分析工具,建立在 NumPy,SciPy 和 matplotlib 上.

  9. 如何使用scikit—learn处理文本数据

    答案在这里:http://www.tuicool.com/articles/U3uiiu http://scikit-learn.org/stable/modules/feature_extracti ...

  10. dplyr-高效的数据变换与整理工具--转载

    1.背景简介 在数据分析工作中,经常需要对原始的数据集进行清洗.整理以及变换.常用的数据整理与变换工作主要包括:特定分析变量的选取.满足条件的数据记录的筛选.按某一个或几个变量排序.对原始变量进行加工 ...

随机推荐

  1. macaca常见错误排查

    1.Error: cannot resolve path (or pattern) 'macaca-test' 这是因为执行run命令的时候未进入用例目录 C:\Users\Tony\node_mod ...

  2. etherlime-4-Etherlime CLI

    Etherlime CLI命令行界面 Installing & Help Syntax语法 npm i -g etherlime Install the global etherlime to ...

  3. 使用 git push 出现error setting certificate verify locations问题记录

    昨天重新装了个系统,使用时出现了error setting certificate verify locations. 出现错误仔细看错误提示,这可是解决问题的关键信息. 将错误的信息复制到搜索引擎中 ...

  4. Python的多线程和多进程

    (1)多线程的产生并不是因为发明了多核CPU甚至现在有多个CPU+多核的硬件,也不是因为多线程CPU运行效率比单线程高.单从CPU的运行效率上考虑,单任务进程及单线程效率是最高的,因为CPU没有任何进 ...

  5. Python自动化之session反解案例

    session反解案例 from django.contrib.sessions.models import Session sess = Session.objects.get(pk='a92d67 ...

  6. [原创]关于在VS解决方案下使用文件夹管理多个项目层次关系的说明

    由于所创建的应用项目或类库项目较多,于是将这些类库放到一个文件夹下.在VS解决方案下确实能看到一个文件夹下多个类库项目这种层次关系.如下图所示: 但打开“我的电脑”,看到的只有类库,并未看到维护层次关 ...

  7. HDU 2639(01背包求第K大值)

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=2639 Bone Collector II Time Limit: 5000/2000 MS (Jav ...

  8. Apache24 + php5.6.31 +Sql server R2 环境搭建①

    win8(7)x64系统下 :PHP5.5.15 + Apache2.4.10 + SQL server 2008 R2  的配置方法分享给大家,32位的同理,不过下载的软件需要也是32位的. 好久未 ...

  9. 【gulp】imageisux安装(webp图片)

    此篇是imageisux的安装教程,imageisux用于处理任何格式图片生成新的webp格式 安装前提 nodejs—npm—gulp 现下以我的配置来展示安装gulp-imageisux过程 1) ...

  10. 数据分析-pandas基础入门(一)

    最近在学习python,所以了解了一下Pandas,Pandas是基于NumPy的一个开源Python库,它被广泛用于快速分析数据,以及数据清洗和准备等工作. 首先是安装numpy以及pandas, ...