洛咕 P2155 [SDOI2008]沙拉公主的困惑
洛咕 P2155 [SDOI2008]沙拉公主的困惑
有个结论,就是如果\(gcd(a,b)=1\),那么\(gcd(a+kb,b)=1\)。证明比较显然。
所以这个题目要问的\(n!\)就可以分成\(\frac{n!}{m!}\)段,每一段和\(m!\)互质的数量都相同,那么显然就是\(\phi(m!)\)
所以答案是\(\frac{n!}{m!}\phi(m!)\)
然后怎么求呢,拆开
\(\frac{n!}{m!}\phi(m!)=\frac{n!}{m!}m!\Pi\frac{p-1}{p}=n\times \Pi\frac{p-1}{p}\)
就是\(m!\)有哪些质因数,显然就是1-m所有数质因数的并,也就是\(\Pi_{i\leq m \text{ and i is prime}}\frac{i-1}{i}\)。
这两个都可以直接预处理,就做完了。。
#include<bits/stdc++.h>
#define il inline
#define vd void
typedef long long ll;
il int gi(){
int x=0,f=1;
char ch=getchar();
while(!isdigit(ch)){
if(ch=='-')f=-1;
ch=getchar();
}
while(isdigit(ch))x=x*10+ch-'0',ch=getchar();
return x*f;
}
int p[10000001],inv[10000001],pr[665000],d[10000001],dd[10000001];
int s[10000001];
bool yes[10000001];
int main(){
#ifndef ONLINE_JUDGE
freopen("1473.in","r",stdin);
freopen("1473.out","w",stdout);
#endif
ll T=gi(),R=gi(),n,m;
for(int i=2;i<=10000000;++i){
if(!yes[i])pr[++pr[0]]=i,d[i]=dd[i]=i;
for(int j=1;1ll*i*pr[j]<=10000000&&j<=pr[0];++j){
yes[i*pr[j]]=1;d[i*pr[j]]=pr[j];
if(i%pr[j]==0){
dd[i*pr[j]]=dd[i];
break;
}
dd[i*pr[j]]=dd[i]*pr[j];
}
}
p[0]=1;for(int i=1;i<=10000000;++i)p[i]=1ll*p[i-1]*i%R;
inv[1]=1;for(int i=2;i<R&&i<=10000000;++i)inv[i]=(R-1ll*(R/i)*inv[R%i]%R)%R;
for(int i=1;i<=pr[0];++i)s[pr[i]]=1ll*(pr[i]-1)*inv[pr[i]]%R;
s[1]=1;
for(int i=2;i<=10000000;++i)
if(s[i]==0)s[i]=s[i-1];
else s[i]=1ll*s[i]*s[i-1]%R;
while(T--){
n=gi(),m=gi();
if(n>R)puts("0");
else printf("%lld\n",1ll*p[n]*s[m]%R);
}
return 0;
}
洛咕 P2155 [SDOI2008]沙拉公主的困惑的更多相关文章
- 洛谷 P2155 [SDOI2008]沙拉公主的困惑 解题报告
P2155 [SDOI2008]沙拉公主的困惑 题目描述 大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为\(1\)到\(N\)的阶乘,但是,政府只发行编号与\(M!\ ...
- [bzoj2186] [洛谷P2155] [Sdoi2008] 沙拉公主的困惑
Description 大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行编号与M!互质的钞票.房地产第一大户沙拉公主决定预测一下大富翁国现 ...
- P2155 [SDOI2008]沙拉公主的困惑
\(\color{#0066ff}{ 题目描述 }\) 大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行编号与M!互质的钞票.房地产第一大 ...
- Bzoj 2186: [Sdoi2008]沙拉公主的困惑 乘法逆元,线性筛,欧拉函数,数论
2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 2560 Solved: 857[Submit][St ...
- 数学(逆元):BZOJ 2186: [Sdoi2008]沙拉公主的困惑
2186: [Sdoi2008]沙拉公主的困惑 Description 大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行编号与M!互质的钞 ...
- BZOJ2186: [Sdoi2008]沙拉公主的困惑(求[1,N!]与M!互素的个数)(线性筛)
2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 6103 Solved: 2060[Submit][S ...
- BZOJ2186 [Sdoi2008]沙拉公主的困惑 【数论,欧拉函数,线性筛,乘法逆元】
2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec Memory Limit: 259 MB Submit: 5003 Solved: 1725 [Submit] ...
- 【BZOJ 2186】 2186: [Sdoi2008]沙拉公主的困惑 (欧拉筛,线性求逆元)
2186: [Sdoi2008]沙拉公主的困惑 Description 大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行编号与M!互质的钞 ...
- 【bzoj2186】[Sdoi2008]沙拉公主的困惑
2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 3303 Solved: 1129[Submit][S ...
随机推荐
- Linux bzip2命令详解
Linux bzip/bunzip2命令是.bz2文件的解压缩程序. bunzip2可解压缩.bz2格式的压缩文件.bunzip2实际上是bzip2的符号连接,执行bunzip2与bzip2 -d的效 ...
- Linux通过docker安装运行酷Q--用QQ骰子君进行跑团
Linux通过docker安装运行酷Q 文:铁乐与猫 需求:和小伙伴周末进行愉快的TRPG跑团,需要在QQ讨论组上加了qq小号后,将qq小号用酷Q配合投骰的应用变成骰子君. 限制:我个人的云计算服务器 ...
- win8中 cmd直接以管理员权限运行
一.组合键 WIN+X 二.锁定到任务栏,方便以后快速启动 三.控制面板->控制中心 四.更改用户账户控制设置--调到最低 好了,点击任务栏的命令提示符
- ASP.NET MVC 5 开发环境配置
Install-Package Ninject -Version 3.2.2 -ProjectName SportsStore.WebUIInstall-Package Ninject.Web.Com ...
- November 9th 2016 Week 46th Wednesday
Love is the poetry of the scenes. 爱是感官之诗. Recently I always feel lonely, I badly hope that I can fin ...
- ZT 类模板Stack的实现 by vector
*//*第3章 类模板 与函数相似,类也可以被一种或多种类型参数化.容器类就是一个具有这种特性的典型例子,它通常被用于管理某种特定类型的元素.只要使用类模板,你就可以实现容器类,而不需要确定容器中元素 ...
- 原生JS 将canvas生成图片
核心代码: <script type="text/javascript"> // Converts image to canvas; returns new canva ...
- Java编程练习题
曾经,有人说过,没有刷题的人生是不完整的.看了几天Java,我试着做了几道练习题,好让我的人生完整一点.(偷笑--)这里挑了一些题来跟大家分享,本文不定期更新. 题目集 1. 最后一个单词的长度 ...
- CURL的学习和应用
curl安装: xp下面的安装 :修改php.ini文件的设置,找到php_curl.dll //取消下在的注释extension=php_curl.dll linux下面安装: # wget htt ...
- 20155314 2016-2017-2 《Java程序设计》第3周学习总结
20155314 2016-2017-2 <Java程序设计>第3周学习总结 教材学习内容总结 学习目标 区分基本类型与类类型 理解对象的生成与引用的关系 掌握String类和数组 理解封 ...