转载请注明源出处:http://www.cnblogs.com/lighten/p/7338372.html

1.前言

  本章介绍Java中最常用的一个集合类HashMap,此类在不同的JDK版本有不同的实现,目的就是为了优化其效率。本章依旧是基于JDK8的HashMap进行讲解,其与JDK7有极大的区别,从代码量上来说,JDK8的实现超过2千行,JDK7为1千行。因此,本章只介绍HashMap的实现原理,其它的略讲。

  注意:红黑树图画的有点问题,线的颜色不对,之前理解的不到位,如果看晕了可以看TreeMap中的介绍,比这里要清楚一些。左旋右旋操作还是看这篇文章。图不改了。

2.HashMap

  HashMap实现了Map接口,其数据结构是Hash表。该类与HashTable十分相似,就两点不一样:1.线程不安全;2.允许键或值为null。HashMap不保证map中的次序,特别是不保证次序永远相同。HashMap提供常量时间性能的基本操作get和put。迭代器遍历的效率与HashMap的容量和Size相关,所以不要设置初始容量过大(或者load factor太小)。

  HashMap有两个参数会影响其性能:初始容量大小和载入因子(load factor)。初始容量大小指的是Hash桶的大小。载入因子是来衡量hash表在其容量增加之前允许达到的完整度。当hash表中的实体数量超过了载入因子和当前容量,hash表就会刷新,新的hash表将会是hash桶的2倍数量。通常载入因子设置成0.75,这个会达到一个良好了时间和空间性能。超过这个值会减少空间开销,但是会增加查询开销。设置初始容量的时候需要考虑map中将容纳的数量和map的载入因子,这样可以最小化刷新的次数。如果初始容量大于最大的实体数/载入因子就不会刷新。可以使用Collections.synchronizedMap(new HashMap(...));来进行同步hashMap。

  注意:如果在创建迭代器之后,HashMap的结构改变了,任何情况下迭代器的remove方法都会抛出并发异常。因此迭代器是"fail-fast“的。

  JDK8在实现上与JDK7最大的不同在于,当hash桶上的数量过大的时候,会将结构改变成Tree,类似于TreeMap。大部分的桶都使用普通的方法,但是合适的时候会使用TreeNode方法。TreeNode桶可以转换并且像其他的使用一样,并且在数量过多的时候查找效率会得到提升。然而,在绝大部分桶并没有数据过多的时候正常使用,在表格方法中判断tree桶存在会有延迟。

2.1数据结构

  DEFAULT_INITIAL_CAPACITY:默认初始化容量,必须是2n

  MAXIMUM_CAPACITY:最大的容量230,必须小于或等于这个值

  DEFAULT_LOAD_FACTOR:默认的载入因子0.75f

  TREEIFY_THRESHOLD:桶的阈值,超过这个数量会转成Tree。默认8

  UNTREEIFY_THRESHOLD:桶的阈值,低于这个数量会转成普通的桶。默认6

  MIN_TREEIFY_CAPACITY:hash表最小的容量。必须是4*TREEIFY_THRESHOLD,避免刷新和treeification thresholds的冲突。

  数据结构如上图,主要就是一个table和size。HashMap的键值对Entry实现如下:

  hash值,键,值和下一个节点。

2.2 方法

  这段代码的理解可以参考:这里。下面做一个简单的描述。

  这段代码就是一个计算hash值的代码,难以理解的地方在于h^h>>>16。这是一个扰动函数,目的是为了减少碰撞或者说是冲突。上面计算出来的hash值是不能直接使用的,因为int的取值范围太大,不可能放在hash表中(初始容量只有16),所以还需要再做一步取余的操作n&(length-1),这样就可以放入其中了。但是这么处理会有一个麻烦的地方,那就是其值关注了低位的情况(初始容量太小)。高位的数据等同于没用,如果hashCode的值直接使用,而其值的分布范围恰好造成低位近似,就会产生严重的冲突。上面的扰动函数就是用来解决这个问题的。h^h>>>16,整形的长度是32个bits,右移16位正好高低位做异或,得到的值的低位保留了高位的相关信息,使得低位更加随机,减少冲突的产生,更加均匀的分布到hash表中。所给链接也有实验证明,这样操作是能减少冲突的。

  从构造函数可以看出,其并没有初始化hash表,数组table。这个和JDK7所进行的就不一样,其在构造方法中就初始化了hashTable。先看看最常用的两个方法put和get的实现吧。

  get方法的就是通过调用getNode方法找到该键值对而已。

  这段代码就可以看出其都需要判断一下table有没有初始化,没有就直接返回null。否则就返回该键落在的hash表上的hash桶的第一个节点,比对键值。如果不是就根据是TreeNode还是一般的链表结构继续查找,直到找到或者找完该桶所有元素。

  put方法也是先判断表存不存在,不存在就创建,再判断hash表中该位置是否有值,没有值就直接存入。存在就判断这第一个键是否相等,最后才根据onlyIfAbsent来决定是否设置值。如果第一个不相同,就判断是否是TreeNode,再根据其相关方法插入,否则就是一般的桶,遍历到最后一个还不存在就创建,再判断当前数量是否达到转换成Tree结构的阈值。找到了就停止,和之前一样根据onlyIfAbsent来决定是否设置值。

  现在来看看resize方法和treeifyBin方法。resize方法太长,就不进行截图了,描述一下进行过程:(1)初始化变量,包括原表,原表长度,和原表要变成的长度。如果原表容量大于0,超过最大值就不改变,返回,小于最大值就新表扩容1倍,新表下次扩容大小也加倍。如果原表容量等于0,但是下次扩容大小大于0,下次扩容大小就是新表大小。如果都不满足,就设置新表大小为默认初始化大小,计算下一个扩容大小。如果下一次扩容大小为0,就通过loadFactor和新表容量计算出大小。(2)根据计算出来的新表大小生成新表(3)如果旧表不为null,遍历旧表,一个个桶遍历过去,放在新表指定位置。(4)返回新表。

2.3 桶的转换

  从前面也可以看出,当一个hash桶的数值达到了默认值时,就会转换成树结构。下面深入探讨一下这部分的内容:

  上图是一个TreeNode的基本结构,这个树结构是一个红黑树,下面详细介绍一下该内的相关方法,了解一下红黑树的实现方法。

  树的根节点查找十分简单,不断的查找父节点就可以了,为null的那个节点就是根节点。

  上面方法就是hash表的一个结点的链表达到了转换成树结构阈值的时候的转换方法。可以看到在hash表较小的时候,其先采取的方法是扩容来达到减少结点链表长度的作用。如果不进行扩容,就将结点替换成TreeNode,然后遍历设置前后结点了,hd是头结点,tl是前一个结点,p是当前结点。组成了TreeNode的双向链表头,将头结点放入hash当前位置,然后调用头结点的treeify方法。

  上面代码就是将双向链表的TreeNode结点改成Tree结构。这个方法是TreeNode类的方法。从双向链表第一个节点就是当前结点开始,设置成树的根节点。每个进来的结点(遍历的结点)都拿出其键和hash值,然后遍历这棵树(这就是上面代码循环root结点的内容),准备加入已经有序的树中。如果进来的结点的hash值比当前树结点要小,dir为-1(放入结点左边),大于dir为1(放入结点右边),如果相等,且不能通过类的compareTo方法进行比较出结果,就通过System.identityHashCode(a)方法比较,只是为了满足能够比较出差异,而不保证顺序。接下来根据dir判断放入当前节点的左边还是右边,前提其为null,不为null就循环。最后找这个位置,进来的结点父节点就是当前循环的树的结点,dir小于0树的结点左孩子就是进来的结点,大于0就是在右边。

  上面的操作可能会破坏红黑树的左右平衡,所以还需要进行平稳的插入。TreeNode的balanceInsertion(root, x)方法来完成,其返回值是根节点。此方法太长,不进行截图,这里描述一下维持红黑树平衡的办法。此方法的入参是上面一步得到的二叉树的根节点root和插入树的当前结点x,此时虽然满足了红黑树的一个特性即左节点<父节点<右节点,但是可能破坏了平衡二叉树的要求,左右子树的深度差距不能超过1。要理解这段代码,标记位red十分重要,其表示红黑树是否红链接。红链接的含义是将其和其左节点看做是同一个节点,此为2-3树的原理。这里提供一个具体的参考博客,再来看Java中的平衡插入步骤就会比较容易了。博客:这里。步骤如下:

  1.插入节点x先被设置成红链接,其的父节点xp为null,证明插入节点是root节点,返回x根节点。

  2.xp不是红链接,或者父节点xp的父节点xpp为null,不需要调整,直接返回root节点。

    这两种情况都是返回root节点,一个新入的X结点都是先设置成红链接,再不断上移,和2-3树那篇文章的顺序是反的。

  3.判断插入的x是在父父节点xpp的左边,到了这一步肯定是因为xp是红链接,且xpp不为null:

    ①xpp节点右边xppr不为null,且xppr是一个红链接。这种情况xppr分裂,xp也不会是红链接,但是xpp变成了红链接。当前结点变成了xpp节点。

      上面两种情况都差不多,最终会变成XPP成为X节点,重新进入循环,然后满足第2部,返回root节点50,从图中也可以看出,此时左右树的深度是达到了平衡。

    ②x是xp的右节点,x变成xp,进行左旋转。重新赋值xp和xpp。如果xp不为null,xp变成非红链接。此时xpp不为null,xpp是一个红链接,进行左旋转。

    上图是第一次左旋操作,可以看出37和25的位置对调了一下,而此时X是P,XP是不为null,且XPP也是不为null的,此时需要进行右旋转:

    这样就可以看出形状从最初的不平衡,变成了最后的平衡状态。

  4.x是父父节点xpp的右边,这个步骤的逻辑和3是一样的,只是换了方向而已,不再给出图解:

    ①如果xppl不为null且是红链接,拆分成不是红链接,xp也不是红链接,xpp变成红链接,当前结点变成xpp。

    ②x是xp的左节点,x变成xp进行右旋转,重新赋值xp和xpp。再判断xp是否为null,不是null,xp变成非红链接,但是如果xpp不为null,那么xpp是一个红链接,进行左旋转。

  左右旋转是为了插入和删除的时候保持二叉树的平衡。光看代码和图解,还是比较难以理解,只知道按着代码会变成这个平衡的样子,但是不知道为何这样操作会保持平衡(上图解并没有给出全部的可能性)。其实左旋转和右旋转并不是很难理解,听其名字就可见一二。下面以左旋为例进行详细介绍,右旋其实是一样的。

  上面这个图形肯定是不平衡的,而简单的平衡方法就是以25为父节点,左旋转一圈变成

  一般想象旋转,肯定就是这样子的了。但是问题就出来了,37的旋转会产生冲突,所以Java的那段难以理清的代码,就是为了解决这个冲突的。

  这里的p就是要旋转的顶点了。如果P不存在或者没有右节点,那就旋转不了。第一个if就是解决P的右节点存在左节点,这个左节点就是p的右节点了,从图也可以看出数值的排序是37的左是会大于P 25的左的,所以放在P的右边。第二个if就是用右节点替换掉P节点,作为顶点,此时如果该顶点的父节点为null,意味着一开始这个订单就是root顶点,需要替换root,改变红链接,如果该顶点的父节点不为null,左旋的结点就不是根节点,要重新绑定其子节点:左节点等于P的时候,变成r,否者就是右节点变成r(左旋是发生在父节点的左边还是右边的区别)。然后把p绑定在r上。

  最后结果如上,由于XPP还存在,所以需要以XPP右旋,右旋的逻辑不再叙述,和左旋一样,最后的结果(没有再仔细处理红链接):

3. 后记

  HashMap本想给出整个流程图的,但是想了想必要性不大。hash表的结构和使用应该都不是什么难点,唯一复杂的就是JDK8的转成红黑树的部分,本文也着重介绍了这部分的内容,也就不再进行画图了。HashMap中其它的内容也不会难以看懂,就不再进行介绍了,有了上面的解析,再看HashMap也不会一脸迷茫。

Java之集合(八)HashMap的更多相关文章

  1. Java自学-集合框架 HashMap

    Java集合框架 HashMap 示例 1 : HashMap的键值对 HashMap储存数据的方式是-- 键值对 package collection; import java.util.HashM ...

  2. java - day011 - 集合, ArrayList HashMap,HashSet, Iterator 接口, for-each 循环格式

    集合 ArrayList 丑数: 能被3,5,7整除多次, ArrayList     list 接口             | - ArrayList             | - Linked ...

  3. Java自学-集合框架 HashMap和Hashtable的区别

    HashMap和Hashtable之间的区别 步骤 1 : HashMap和Hashtable的区别 HashMap和Hashtable都实现了Map接口,都是键值对保存数据的方式 区别1: Hash ...

  4. Java基础知识强化之集合框架笔记63:Map集合之HashMap嵌套ArrayList

    1. ArrayList集合嵌套HashMap集合并遍历. 需求:假设ArrayList集合的元素是HashMap.有3个.每一个HashMap集合的键和值都是字符串.元素我已经完成,请遍历. 结果: ...

  5. Java基础知识强化之集合框架笔记62:Map集合之HashMap嵌套HashMap

    1. HashMap嵌套HashMap  传智播客          jc    基础班                      陈玉楼  20                      高跃   ...

  6. Java基础知识强化之集合框架笔记57:Map集合之HashMap集合(HashMap<Student,String>)的案例

    1. HashMap集合(HashMap<Student,String>)的案例 HashMap<Student,String>键:Student      要求:如果两个对象 ...

  7. Java基础知识强化之集合框架笔记56:Map集合之HashMap集合(HashMap<String,Student>)的案例

    1. HashMap集合(HashMap<String,Student>)的案例 HashMap是最常用的Map集合,它的键值对在存储时要根据键的哈希码来确定值放在哪里. HashMap的 ...

  8. Java基础知识强化之集合框架笔记55:Map集合之HashMap集合(HashMap<Integer,String>)的案例

    1. HashMap集合(键是Integer,值是String的案例) 2. 代码示例: package cn.itcast_02; import java.util.HashMap; import ...

  9. Java基础知识强化之集合框架笔记54:Map集合之HashMap集合(HashMap<String,String>)的案例

    1. HashMap集合 HashMap集合(HashMap<String,String>)的案例 2. 代码示例: package cn.itcast_02; import java.u ...

随机推荐

  1. 第七章 介词(La préposition )

    法语中的介词是将两个同类或非同类的词连接在一起,把一个句中成分同另一个句子成分联系起来,并表明两者之间关系的词类.介词是一种无词性变化的词类. ★介词的形式 ()简单形式的介词,如: ()复合形式的介 ...

  2. python面向对象开发的自我理解

    ​详细代码理解可以参考 笨鸟教程博客:http://www.runoob.com/python3/python3-class.html 面向对象经常被提起,那到底什么是面向对象呢? 它的基本概念:类, ...

  3. Java源码更改的方式

    1.找到要改的类所在包名地址. 比如标签名的更改: <s:debug></s:debug> (1)ctril+鼠标左键========双击标签,就会弹出标签所在的类的文本 (2 ...

  4. MFC中不同对话框间使用SendMessage发送自定义消息的具体实现

    1. 基本知识 SendMessage的基本结构如下: SendMessage(     HWND hWnd,  //消息传递的目标窗口或线程的句柄.     UINT Msg, //消息类别(这里可 ...

  5. C++中的数组问题

    C++中的数组问题 1. 数组赋值与初始化 (1)直接初始化: ]={,,}: (2)遍历访问初始化: ;i< ;i++) //直接读入,或者用别的数组,以及别的(i+1)等. (3)内存操作函 ...

  6. Apache服务器的简单配置与安全策略

    在之前讲的关于weevely后门分析中,有说到利用Apache的配置文件.htaccess来隐藏php后门.关于.htaccess文件的用途,在此结合Apache服务器的具体配置作一详解,也算是自己的 ...

  7. wsdl 结构解析

    webservice的跨平台特性要求它必须有某种手段来对服务进行自我描述,使不同的语言能正确理解如何调用该服务.webservice通过WSDL(Web Services Description La ...

  8. Redis 慢查询

    Redis 慢查询   许多存储系统提供慢查询日志帮助开发和运维人员定位系统的慢操作.慢查询日志就是系统在命令执行前后计算每条命令的执行时间,当超过预设阈值就将这条命令的相关信息记录下来Redis提供 ...

  9. net_framework-EF CodeFirst

    CodeFirst——手动创建POCO类(Plain Old CLR Object,即平时认识的ado.net实体类),类之间的关系使用代码定义.当应用程序首次执行时,EF将在数据库服务器中自动生成数 ...

  10. .net core cache使用

    整理下.net core cache的使用 Nuget安装   Microsoft.Extensions.Caching.Memory using Microsoft.Extensions.Cachi ...